
DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

DON XML Working Group 1

 2

DON XML Developer's Guide Version 1.1 3
4
5
6
7
8
9

10

This Version:
DON XML Developer's Guide Version 1.1 – 1 May 2002
Latest Version:
DON XML Developer's Guide Version 1.1 – 1 May 2002
Previous Version:
Initial DON XML Developer’s Guide – 29 October 2001
Author:
Brian Hopkins (xosys@sbcglobal.net) 11

 12

About This Document 13

14
15

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this document
series is maintained at the NavyXML Quickplacei. Additional DON XML policy and
guidance can also be found at the NavyXML Quickplace.

16
17
18
19
20
21
22
23
24
25
26
27
28

A version number has been introduced in the title of this document. The initial
release of the document on 29 October 2001 represented version 1.0. This update is
version 1.1. It represents the consensus of the DON XML WG as guidance for the
development of XML components with the department.
This document is an early deliverable of the overall DON XML strategy for employing
XML within the department. It provides general development guidance for the many
XML initiatives currently taking place within the DON while the DON XML Work
Group (DON XML WG) is in the process of developing a long-term strategy for
aligning XML implementations with the business needs of the department. It is
intended to be a living document that will be updated frequently.
This version of the guidance is primarily written to assist developers in creating
schemas that describe XML payloads of information. It should be noted that
payloads represent only one component required for secure, reliable information

29
30

 1

mailto:xosys@sbcglobal.net?subject=DONXML Developer's Guide V1.1 Comments:
http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf?OpenDatabase

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

exchange. Other components include a specification for reliable messaging
(including authentication, encryption, queuing, and error handling), business service
registry and repository functions, and transport protocols. Emerging technologies
and specifications are, or will shortly, provide XML-based solutions to many of these
needs. The DON XML WG is developing an XML Primer that will describe each of
these components and bring together the overall strategy for capitalizing on XML as
a tool for enterprise interoperability.

31
32
33
34
35
36
37
38

♦ 39
40

♦ 41
42

♦

Paragraphs of this document are broken into three parts.

“Guidance” provides a concise summary of requirements and
recommendations.

“Explanation” provides a brief explanation of the reasoning behind the
guidance provided.

“Example” provides one or more non-normative examples pertaining to the
guidance.

43
44
45
46
47
48
49
50
51
52

The bulk of this document is contained in appendices that are provided as non-
normative supplementary information. The appendices should be considered to have
a “draft” status, and do not represent the consensus of the DON XML Working
Group (WG).
This document is primarily intended for developers already familiar with XML;
however, it has a comprehensive glossary that provides good starting points for XML
beginners. Some of this document focuses on XML Schemas as a tool for
interoperability. To get the maximum benefit, it is suggested that you take the time to
become familiar with the XML Schema language. An excellent tutorial with labs is
available at

53
http://www.xfront.com/. 54

55 The DON XML WG encourages developers to try the techniques recommended here
and provide feedback via the editor. Lessons learned and best practices will be
collected and used to update and expand the guide periodically.

56
57

 58

Table of Contents 59

60
61
62
63
64
65
66

1. REFERENCES.. 4

2. INTRODUCTION... 5

3. TERMINOLOGY AND CONVENTIONS.. 5

4. IMPLEMENTATION REQUIREMENTS .. 6

4.1. Requirements Level .. 6

4.2. Conformance ... 6

4.3. Conflict resolution .. 6

 2

http://www.xfront.com/
mailto:bhopkins@logicon.com?subject=Feedback: Consensus Draft Summary XML Guidance 17 October

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

4.4. Applicability... 6 67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

5. DOD XML REGISTRY .. 7

6. RECOMMENDED XML SPECIFICATIONS... 8

7. XML CONVENTIONS ... 13

7.1. XML Components.. 13

7.1.1. Standardized Case Convention ... 13

7.1.2. Usage of Acronyms and Abbreviations .. 14

7.1.3. XML Component Selection and Creation ... 15

7.1.3.1. Creating XML Element Names from Business Terms.................... 21

7.1.3.2. Creating XML Component Names from ISO 11179 Data Elements
 21

7.1.3.3. Choosing XML Component Names ... 22

7.2. Schema Design ... 23

7.2.1. Schema Languages ... 23

7.2.2. Recommended Schema Development Methodology 24

7.2.3. Capturing Metadata ... 27

7.2.3.1. Application Specific Metadata.. 29

7.2.3.2. Capturing XML Component Definitions.. 30

7.2.3.3. Enumerations and Capturing Code Lists 31

7.3. Document Annotations... 32

7.3.1. Document Versioning... 32

7.3.1.1. Versioning DTDs.. 33

7.3.1.2. Versioning XML Schemas ... 33

7.3.1.3. Versioning Stylesheets .. 34

7.3.2. Headers ... 34

7.3.2.1. Schema : ... 35

7.3.2.2. Stylesheets: ... 35

7.3.2.3. Instances ... 36

7.4. Attributes vs. Elements .. 36

8. POINTS OF CONTACT .. 38

DON XML WG Government Lead: ... 38

DON XML Technical Lead and Editor:.. 38

 3

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

9. DOCUMENT HISTORY.. 38 99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Initial DON XML Developer’s Guide 29 October... 38

Initial DON XML Developer’s Guide V1.1 ... 38

10. APPENDICES... 42

Appendix A – ebXML and the eBTWG.. 1

Description.. 1

ebXML Naming Rules... 2

Representation Terms .. 5

Appendix B – Schema Development.. 1

Possible Schema Development Procedure Summary .. 1

Appendix C - Tools and References... 1

Tools... 1

Publications .. 2

Internet ... 4

Appendix D – W3C XML Recommendations.. 1

Appendix E – Combined XML Schema Example... 1

Appendix F – Sample XML Document Headers... 1

Sample Schema Header ... 1

Notes on header fields: ... 2

Sample Stylesheet Header.. 5

Sample Instance header ... 6

Appendix G – Draft Glossary and Acronyms .. 1

Terms ... 1

Appendix H – Implications of the XML Schema Language for XML Component
Design... 1

Implications of Schemas for Business Document Design..................................... 1

Extensibility ... 1

Modularity.. 3

 128

1. References 129

 4

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

130
131
132
133
134

(a) DON CIO Interim Policy on the Use of Extensible Markup Language For

Data Exchange dtd 06 Sept 2001
(b) DON XML Vision dtd 15 March 2002.
(c) SECNAVINST 5000.36, Data Management and Interoperability

2. Introduction 135
In August 2001 DON CIO established a DON XML Work Group (DON XML WG) to
provide the leadership and guidance to maximize the value and effectiveness of
emerging XML component technologies implemented across the DON Enterprise. At
its first meeting in August 2001, the DON XML WG agreed to produce a DON XML
Developer’s Guide as a deliverable. This document serves as a reference guide for
making existing applications “XML-enabled”, and for developing future capabilities
that will leverage XML to the maximum extent possible.

136
137
138
139
140
141
142

Service initiatives such as Task Force Webii (TFWeb) are implementing XML-
enabled applications very quickly. This document will assist DON activities in
developing XML implementations in the short term, while lessons learned are
collected.

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

On 6 September 2001 the Department of the Navy Chief Information Officer signed
out reference (a), an Interim XML Policy Statement on the use of XML within the
department. Copies of this policy are available on the NavyXML QuickPlace.
On 15 March, the DON CIO released reference (b), a vision statement for XML:
“In order to achieve maritime superiority, the Department of the Navy will fully exploit
Extensible Markup Language technology as a key interoperability tool for next
generation DON knowledge superiority and its developing network centric
information infrastructure”.
Subsequently, the DON XML WG divided into 5 action teams. The purpose of Action
Team 2 (AT 2) is:
“To support the Department of the Navy’s (DONs) vision to fully exploit Extensible
Markup Language (XML) as an enabling technology to achieve interoperability in
support of maritime information superiority by developing policy, guidance and
procedures to establish a standard framework for organization specific XML
implementation.”
This Guidance is an early deliverable of AT 2 and will continue to be updated and
expanded by it during the course of the DON XML WG’s existence.

3. Terminology and Conventions 164
165
166

The terms "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are

 5

http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf?OpenDatabase
http://www.tfw.navy.mil/

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

used throughout this document, and should be interpreted in accordance with the
Harvard University Network Group “Request for Comments” #2119 Best Current
Practices” #14 (

167
168

RFC 2119i)iii 169
The term XML is used throughout this document to describe a large range of
specifications and technologies associated with XML

170
markup. 171

172 It is critical that activities developing XML-enabled applications have a firm
understanding of basic XML terminology. Appendix G provides a list of applicable
acronyms and terms.

173
174
175
176
177
178

Many schema languages have been created for expressing XML validation rules;
however, throughout this document the term ‘schema’ with a small ‘s’ is used to
generically refer to all XML Validation languages (to include DTDs), while the term
XML Schema or just Schema (capital ‘S’) refers specifically to schemas authored in
accordance with the W3C XML Schema recommendation. 179

4. Implementation Requirements 180
181 This document defines a standard for using XML within the DON. It provides

recommendations and best practices for the creation of XML schema and 182
components for “XML-enabling” applications. 183

184
185
186
187
188

DON CIO understands that short timeframe XML implementations (such as TFWeb),
or pre-existing schema that do not follow this guidance cannot be changed
immediately. Activities SHOULD read this document and develop a migration plan to
evolve their current XML implementations; additionally, the DON XML WG
encourages submission of feedback as lessons learned are collected.

4.1. Requirements Level 189
190
191

The RFC 2119 terms defined above should be interpreted in the context of this
document’s requirements level, which is that of guidance.

4.2. Conformance 192
193
194
195

Enforcing conformance to the requirements of this document is, at present, left to the
discretion of the program manager. As this document matures, the DON CIO MAY
elevate some or all of the guidance to a higher requirements level.

4.3. Conflict resolution 196
197
198

In the event of a conflict between this document and other Navy standards, this
document SHOULD have precedence for matters pertaining to XML only.

4.4. Applicability 199
200
201
202

This guidance applies to all activities in the DON that are implementing applications
that use XML for the exchange of information with other applications via public
interfaces. This version of the developers guide contains guidance of a general

 6

http://www.ietf.org/rfc/rfc2119.txt

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

nature that is applicable to both document-centric and data-centric information
exchanges. It also contains specific guidance for data-centric exchanges necessary
for enterprise interoperability. Specific guidance for document-centric applications
will be forthcoming in the next version.

203
204
205
206
207
208
209
210
211
212

These recommendations are not intended to restrict the use of XML internal to
systems; the DON XML WG recommends that applications separate internal XML
grammars processed by application code from that used for external
communications. This decoupling of internally processed XML with that which is
communicated externally insulates application code from XML vocabulary evolution
and allows such loosely coupled applications to stay current with the latest schemas
and components promulgated by communities of interest and Voluntary Consensus
Standards.

213
214

 215

5. DoD XML Registry 216

217

218

Guidance

Reference (a) REQUIRES all DON developers to reuse Voluntary Consensus
Standard vocabularies if applicable, or reuse existing tags in the DoD XML Registry,
if sufficient, or before developing their own.

219
220
221

Reference (a) REQUIRES activities to register developed XML Components with the
DOD XML Registry.

222
223

Emerging DoD XML policy is expected to require registration of Voluntary
Consensus Standard components; therefore activities SHOULD include these
components in their registration packages.

224
225
226
227 Developers MUST familiarize themselves with DoD XML Registry site and the

associated DoD Namespaces1. Each activity submitting a registration package to the
registry is REQUIRED to do so to a specific DOD Namespace via the

228
Namespace

Manager. In the case where an application's data crosses DoD Namespace
boundaries, activities SHOULD request the

230
DoD Namespace Manager to provide

guidance.

229

231
232

233
234
235

Explanation

While this guidance provides many recommendations and examples of how to
create more interoperable XML, the single biggest factors affecting interoperability

1 A COE Namespace and an XML Namespace are not the same thing. It is important
to understand the difference. The difference is explained in the Appendix G – Draft
Glossary under COE Namespace.

 7

http://www.buginword.com

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

236
237
238
239
240
241
242
243
244
245

246
247

are visibility and reuse. A draft DoD policy establishes the Defense Information
Systems Agency (DISA) as the lead for the single DoD point of entry for XML
registry and repository functions.. The intent of the DOD Registry is to provide
visibility into XML components that are being used throughout the DoD.
The DON XML WG is working with DoD representatives to develop specific
guidance for developers as to which DoD Namespace they should register with. Until
this is promulgated, activities should study the Namespace descriptions on the
registry site and contact the Namespace manager for what appears to be the most
appropriate place for registration. If unable to locate an appropriate Namespace,
register with the ‘To Be Determined’ (TBD) Namespace.

Example

An example of a DoD Registration package from the DoD XML Registry is available
for download from the NavyXML Quickplace library. 248

249

6. Recommended XML Specifications 250

251

252
253
254
255
256
257
258
259

Guidance

Standards promulgated by nationally or internationally accredited standards
bodies (such as ISO, IEEE, ANSI, OASIS, UN/CEFACT, IETF, etc.) MUST be
adhered to when developing applications within the domain that the standard
addresses. The only exception to this rule is when a standard produced by one of
these bodies competes with a similar product of the W3C. In this case, only, the
W3C has precedence.
In general, production applications SHOULD only use software that implements
W3C Final Recommendations and final specifications of the accredited standards
bodies referenced in the above paragraph. Applications using software that
implements

260
261

W3C technical reports at other stages of the development process or
other draft products of

262
Voluntary Consensus Standards bodies MUST do so with

the following restrictions:
263
264

♦ 265
266
267
268
269
270
271
272

Production Applications:
¾ Prior to creating, incorporating or using software that implements non-

W3C specifications, activities MUST:
� Ensure that no competing W3C endorsed final recommendation exists

or is being developed (and is at least at the Second Work Draft level).
Future revisions of this document will provide more specific guidance.

� Ensure that the specification is a product of an accredited standards
body (ISO, IEEE, ANSI, UN/CEFACT, IETF) or a credible Voluntary

 8

http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf/h_Library/DE3261A972A4D4FA85256AED001F7833?OpenDocument&Form=h_PageUI
http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf?OpenDatabase

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

273
274
275
276
277
278
279
280

♦ 281
282
283
284

♦ 285
286
287
288
289
290

Consensus Standards body such as OASIS, the OMG, OAG, UDDI,
RossettaNet, or BizTalk . The decision of what is considered credible
organizations is, for the time being, up to the government program
manager.

¾ Activities MAY choose to implement W3C technical reports with a
Proposed Recommendation status provided they are committed to
immediately update software should any changes be made when the
report reaches final status.

Pilot Applications:
¾ Activities developing pilot applications (as a precursor to production) MAY

also implement software that conforms to W3C technical reports with a
Candidate Recommendation status.

(Advanced Concept) Demonstrations:
¾ Activities developing demonstration applications (as a proof of concept)

MAY also implement software that conforms to W3C technical reports with
a Working Draft or Note status or another accredited standards body or
Voluntary Consensus Standards body’s draft specifications.

¾ Exception:
� Activities MAY implement software that conforms to the SOAP 1.1

W3C Note, but MUST then be ready and committed to update software
to the SOAP 1.2 specification when it reaches Final Recommendation
status.

291
292
293
294

� Activities MAY implement the SAX 1.0 and 2.0. 295
296
297
298

All software and software components (XML parsers, generators, validators, enabled
applications, servers, databases, operating systems), and other software acquired or
used by DON activities SHALL be fully compliant with all W3C XML technical
reports holding final recommendation status and with final specifications produced
by accredited standards bodies.

299
300
301
302

♦ 303
304
305

♦ 306
307
308

♦ 309
310
311

Proprietary extensions to W3C Technical Reports or other specifications by
accredited standards bodies :

MUST NOT be employed in any software or XML document (instance,
schema, style sheet) that will be shared publicly with activities outside a local
development environment.
SHOULD only be employed locally (within a homogeneous development
environment) after careful evaluation of possible impacts on cross-platform
interoperability, and dependency on software from a single vendor.

Government program managers MUST have the final say in the decision to
employ such extensions, even when doing so inside a single system’s
boundaries or within a homogeneous development environment.

 9

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

312

 10

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

312
313
314
315
316
317
318
319
320

Explanation

In order to promote interoperability on the widest possible scale, Internationally
accredited standards bodies must have precedence over other organization’s
technical products with the exception of the W3C. The W3C is a vendor consortium,
not an accredited standards body, however, its products have such a strong
influence over commercial software implementations that its work must take
precedence over even accredited standards bodies for matters relating to the World
Wide Web (including XML even though XML is restricted to the WWW.)
OASIS is not currently and an accredited standards organization, it is officially a
Voluntary Consensus Standards body, however OASIS has signed a memorandum
of understanding with ISO and IEEE, and has been given official liaison standing
with these organizations. Consequently, the DON considers OASIS to same status
as accredited standards bodies.

321
322
323
324
325 EbXML is neither an accredited standards body nor a Voluntary Consensus

Standards body. EbXML was an 18-month project sponsored by UN/CEFACT and
OASIS. After completion of the project in May 2001, the work of ebXML is being
carried forward by UN/CEFACT and OASIS jointly.

326
327
328

The W3C Technical Reports page has a complete list of W3C reports in all stages of
development. The following table provides a list of XML specifications or standards
that are not W3C recommendations (yet). Two categories are provided. The
“Recommended” column represents widely adopted standards that are believed to
be mature and uniformly supported by software implementations. The “Maturing”
column represents other standards that the DON XML WG believes to be sufficiently
mature; however, they may not be uniformly supported in existing software
implementations, so caution is advised. Future versions of this document will add
additional specifications from other standards bodies and efforts such as ebXML,
OASIS, UN/CEFACT, etc.

329
330
331
332
333
334
335
336
337
338
339

Recommended Maturing

SAX2 1.0 and 2.0 SOAP 1.1 (W3C Note)

 340
341
342

SOAP 1.1 has been adopted by various commercial and DON activities such as
ebXML and TFWeb; therefore members of the DON XML WG have evaluated the

2 SAX is not a specification developed by a standards body or the W3C. It is an open
source project maintained by a community of developers. SAX parsers have been
written for several languages, but the only platform independent version is the Java
API. A parser that is SAX compliant must implement an equivalent to the Java API,
which is provided at the SAX homepage.

 11

http://www.ebxml.org/
http://www.w3.org/TR/
http://sax.sourceforge.net/
http://www.w3.org/TR/SOAP/

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

specification and believe that it is sufficiently stable and mature to support
production implementation. SOAP 1.1 exists as a W3C Note; however SOAP 1.2 is
being pursued by the W3C

343
344

XML Protocol Working Groupiv. When it becomes a Final
Recommendation, activities with SOAP 1.1 implementation must have planned for
and be ready to migrate to SOAP 1.2.

345
346
347
348 The Simple API for XML, SAX, is a widely adopted specification that is the product of

a software developer consortium. It is mature, stable, widely implemented in XML
parsers and well managed in the open source environment.

349
350
351
352
353
354
355
356
357

358

Application vendors often provide proprietary extensions to adopted standards.
These extensions may simplify the job of software developers, but they also make
developed systems dependent on software from a single vendor, and often they also
restrict the software to being run on a single vendor’s operating system or hardware.
The decision to employ these extensions in any DON application must be made by
the government program manager after careful consideration of the interoperability
impacts.

Example

An example of a conflict between OASIS standards and the W3C exists with respect
to XML

359
schema languages. The W3C promulgated XML Schema language and the

OASIS promulgated
360

RELAX-NG language. While the DON XML WG recognizes that
competing standards such as RELAX-NG may have technical merit when compared
with W3C products, the WG also realized the value in standards conformance, and
as such has designated the W3C as the authoritative source for specifications
related to XML and the World Wide Web.

361
362
363
364
365
366
367

♦

To further illustrate the guidance regarding use of proprietary extensions to W3C
Technical Reports, two examples are provided:

Example 1: An activity developing an XSL stylesheet is using the XALAN XSL
processor

368
369
370
371
372
373
374
375

♦ 376
377
378
379
380
381
382

. Developers discover that the XALAN software has implemented
an extension to XSLT that allows generation of multiple output HTML
documents from a single stylesheet. This is convenient since the project
requires multiple outputs. The lead project manager consults with the
government program manager; the program manager agrees to allow the use
of this proprietary extension provided a stylesheet without the extension is
also delivered.

Example 2: An activity is developing a Visual Basic application for deployment
in a Windows 2000 environment. In that application, the MSXML DOM API is
used to manipulate XML. Microsoft has added many convenient extensions to
the W3C DOM recommendation that the developers want to use. Since the
programming environment is restricted to the Microsoft environment
(Windows and Visual Basic), the government program manager agrees to
allow the use of the MSXML DOM.

 12

http://www.w3.org/2000/xp/Group/
http://www.oasis-open.org/
http://www.w3.org/
http://www.oasis-open.org/committees/relax-ng/

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

383
384
385
386
387
388
389

They key difference between these examples is software code portability. In the first
example, the stylesheet delivered should be able to run in any environment
(operating system, language and XSL processor); therefore a strictly XSLT
conformant deliverable was required. In the second example, code portability was
not an issue since the project was restricted to the Microsoft environment already
due to the choice of programming language and operating system.

7. XML Conventions 390

 391

7.1. XML Components 392

393

394

7.1.1. Standardized Case Convention

Guidance

DON developers SHALL adopt the camel case convention, as defined by the 395
ebXML Technical Architecture, when creating XML component names. 396

♦ XML Elements and XML Schema data types use upper camel case: The first
letter in the name is upper case, as is the letter beginning each subsequent
word.

397
398
399

♦ XML Attributes use lower camel case: Like upper camel case, except the first
letter of the first word is lower case.

400
401

402 Explanation

Voluntary Consensus Standards bodies and other XML organizations such as
OASIS, RosettaNet, Biztalk and ebXML (see Internet references in

403
Appendix C)

have all adopted the camel case convention for
404

XML component naming, with
ebXML differentiating between upper and lower camel case.

405
406

407 Example

 <?xml version="1.0" encoding="UTF-8" ?>
 <!--

 Example of an upper camel case element and lower camel case
attribute

 -->

 <UpperCamelCaseElement

 lowerCamelCaseAttribute="foo" />

 13

http://www.ebxml.org/

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

408

409

410
411

7.1.2. Usage of Acronyms and Abbreviations

Guidance

DON developers SHOULD follow the ebXML guidance for usage of acronyms or
abbreviations in XML component names with the following caveats: 412

♦ 413
414

♦

Acronyms and abbreviations SHOULD generally be avoided in XML element
and attribute names.

For XML Schema data types, abbreviations MUST be avoided while
acronyms MAY be used consistent with the rest of this guidance.

415
416

♦ 417
418

♦ 419
420
421
422
423
424
425
426
427

♦ 428
429
430

When acronyms are used they MUST be in upper case. Abbreviations
SHOULD be treated as words and expressed in upper camel case.

While commonly used acronyms and abbreviations MAY be used in element
and attribute names; the decision to use an acronym or abbreviation SHALL
be made by program managers rather than by application developers . The
decision to use an acronym or abbreviation MUST be based on the belief that
its use will promote common understanding of the information both inside a
community of interest as well as across multiple communities of interest.
When an acronym or abbreviation does not come from a credible, identifiable
source or when it introduces a margin for interpretation error, it MUST NOT
be used.

Acronyms and abbreviations used in component names MUST be spelled out
in the component definition that is required to be included via schema
annotations (as XML comments or inside XML Schema annotation
<xsd:documentation> elements) (see Section 7.2.3.2). References to
authoritative sources from which the acronyms or abbreviations are taken
SHOULD also be included in schema documentation.

431
432
433

434 Explanation

XML documents that rely heavily on terse abbreviated component names are difficult
to understand and subject to misinterpretation. The general consensus among the
major XML standards development consortia is that abbreviations should be avoided
and acronyms used sparingly. Within the DON, business language is heavily laden
with both acronyms and abbreviations and it is often difficult to distinguish between
an acronym and an abbreviation (e.g., CONOPS). After significant deliberation, the
DON XML WG adopted the position that acronyms and abbreviations for use in
element and attribute names are acceptable where they make sense, but should in
general be avoided. While allowing usage, the working group strongly recommends
that the decision for usage be based on a management decision that such usage will
actually promote understanding. The DON XML WG is addressing the issue of
authoritative abbreviation sources as part of the reference (c) Functional Data

435
436
437
438
439
440
441
442
443
444
445
446

 14

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

447
448

449
450
451

Manager responsibilities. For the purpose of this document, authoritative source
determination for abbreviations is left to program manager’s discretion.

Example:

This is an example of providing an element definition in a DTD. Note that the
acronym DoD is spelled out in the definition.

 <!-- DODActivityAddressCode

Definition: A 6-digit code used to uniquely identify
organizations within the Department of Defense (DoD)

-->

<!ELEMENT DODActivityAddressCode (#PCData)>

452

453

454

7.1.3. XML Component Selection and Creation

Guidance

Each DON organization MUST select, use, and adhere to appropriate Voluntary
Consensus Standards (VCSs), consistent with PL 104-113v and OMB A-119vi (i.e.,
use suitable existing VCSs in lieu of developing new DoD or DON XML
components).

455
456
457
458

DON organizations SHALL only develop DON XML components when they are
needed to support DON technical and programmatic needs and when

459
460
461
462
463
464
465
466
467
468
469
470
471

(1) Suitable VCSs do not exist;
(2) Existing VCSs do not suffice or are not appropriate for the intended

application; or
(3) A new VCS cannot be readily developed through a standards

development organization (SDO).
(4) Suitable DoD components do not exist;
(5) Existing DoD components do not suffice or are not appropriate for the

intended application; and
(6) New DoD components cannot be developed through the appropriate

DoD standards process.
Reference (a) requires that existing DoD XML components be used if suitable.
Therefore, the DoD XML registry MUST be searched for existing suitable
components prior to creation of new components. There are three possible results
for this search. Components may be fully or partially suitable, or no component may
be found.

472
473
474
475

♦ 476 A component is suitable if:

 15

http://tis.eh.doe.gov/techstds/publaw.html
http://www.whitehouse.gov/omb/circulars/a119/a119.html
http://diides.ncr.disa.mil/xmlreg/user/index.cfm

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

477
478
479
480
481
482
483
484
485
486
487

♦

¾ It satisfies the element domain requirements,
¾ It is in upper/lower camel case depending on whether it is an element,

attribute or type,
¾ Is either named after a “business term”, or conforms to ISO 11179

conventions and
¾ Abbreviations and acronyms are spelled out in the component definition.

If the component is suitable, it MUST be used. Use of that component MUST be
registered within the DoD XML Registry when/if the registry supports it.
When a DoD component exists but is not suitable, the following procedure can
be used to derive a suitable component while maintaining relationships to
existing DoD components.

Create an XML component using the following steps: 488
489 ¾ A “dictionary entry” using the ISO 11179 rules as modified by ebXML and

the eBTWG (see Appendix A) SHOULD be created for each class or entity
and each attribute of the classes/entities from a logical model of the
information exchange requirement.

490
491
492
493 ¾ [XML Schema only] An XML Schema Type SHOULD be derived from an

ISO 11179-compliant name (see 7.1.3.2 Creating XML Component
Names from ISO 11179 Data Elements).3 The type SHOULD be
documented with metadata from the DoD registry entry upon which this
suitable component is derived. Metadata SHOULD include items such as
the definition, URL to the item, and registry identifier. Any domain
restrictions SHOULD be applied to the type rather than the element.
Additionally, mappings to authoritative DON or DoD data models or data
element definitions (such as the DDDS) MAY be documented in the
element’s definition (see

495
496
497
498
499
500
501

section 7.2.3.2, Capturing XML Component
Definitions).

494

502
503
504
505

¾ Element Creation
� XML Schemas: Create an XML Element that is named according to a

business term (see 7.1.3.1 Creating XML Element Names from
Business Terms).The element SHOULD reference the ISO 11179-
derived type created above. In the case where no suitable business
term exists use the ISO 11179-derived type name (

507
508

see 7.1.3.2
Creating XML Component Names from ISO 11179 Data Elements) .

506

509
510

3 When used as XML component names, ISO 11179 element names SHALL be
converted to camel case by removing the periods and spaces and adjusting the
capitalization.

 16

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

Create an XML Element using the DoD element name and declare it in
the

511
substitution group of the element created above. 512

513
514
515
516
517

� DTDs: Create elements that are named after business terms or ISO
11179-compliant names. Document the DoD Registry element name
and the ISO 11179 name (if a business term is used) in the DTD as an
XML comment.

¾ Attribute Creation: An ISO 11179-compliant names SHOULD be created
for items that are represented as attributes (see 7.1.3.2 Creating XML
Component Names from ISO 11179 Data Elements). XML Attributes
SHOULD be selected based on the guidance of

519
Section 7.4 – Attributes

Vs. Elements, not on their correspondence with data model attributes.

518

520
521

♦ 522
523

♦ 524
525
526

527
528

Register the new element and its relationship to the existing DoD element in
the appropriate namespace of the DoD XML Registry.

If no component is found, XML component names SHOULD be created
following the rules defined above for unsuitable components, except that
there will be no reference to an existing DoD Registry element.

Explanation

The Interim DON XML policy [reference (a)] requires the reuse of XML elements
registered in the DoD XML Registry if those tags are found suitable. The intent of
this guidance is to provide clarification as to what suitability means, and to reinforce
the mandate that the registry be searched as a starting point for suitability
determination.

529
530
531
532
533
534
535
536
537
538
539
540

In the case where an element has been identified as a candidate for reuse but fails
suitability criteria, the above guidance provides a solution for creation of a suitable
element while maintaining a semantic relationship to the initially discovered
candidate.
For creation of XML elements when no suitable element exists in the DoD registry,
the DON XML WG recommends the ebXML-modified ISO 11179 data element
naming convention as a solid basis for XML component creation; however more
commonly understood business terms can be used as element names, with the ISO
11179 structure preserved by XML Schema data types. 541

542

♦ 543
544
545
546
547
548

In summary, an ISO 11179 compliant data element name consists of three parts:

An “Object Class” term, which describes the kind of thing being referred to.
This Object Class may consist of one or more words, some of which may be
context terms.

For example, the ISO 11179 name ‘Acoustic Signal. Frequency. Measure’
has the “object class” ‘Acoustic Signal’.

 17

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

♦ 549

550
551

♦ 552
553
554
555

A “Property Term” which is the property of the thing being referred to, which
may consist of one or more words. For example, the ISO 11179 name
‘Acoustic Signal. Frequency. Measure’ has the property term ‘Frequency’.

A “Representation Term” which identifies allowable values for an element.
This list is taken from an enumerated list of allowable representation types
(see appendix A). For example, the ISO 11179 name ‘Acoustic Signal.
Frequency. Measure’ has the “Representation Term” ‘Measure’.

The ebXML Technical Report, Naming Convention for Core Components ,provides
14 “rules” for constructing a proper data element names. Some considerations are:

556
557

♦ 558
559
560

♦ 561
562
563

♦ 564
565

♦ 566

♦ 567
568
569
570
571
572
573

574
575
576

♦ 577
578

♦ 579
580
581
582

When the Representation Term and the Property Term are redundant, the
property term is dropped, so ‘Item. Identification. Identifier’ becomes ‘Item.
Identifier’.
When an element describes an entire class of things (e.g., not a specific
property of it), the Property Term may again be dropped, for instance
‘Documentation. Identifier’.
An aggregate component shall have a Representation Term of ‘details’.

Note that ISO 11179 names MAY be made directly into XML component names:

For XML Schema data types and XML attribute names.

For XML element names when a business term cannot be found or agreed to.
The above discussion was taken from the initial set of specifications and technical
reports produced by ebXML in May 2001. These initial documents formed a baseline
form which OSIS and UN/CEFACT could jointly develop ebXML concepts. Appendix
A provides more updated ISO 11179 and core component definition guidance that
was taken from recent draft documents. This information SHOULD be used as
guidance only, but may prove helpful.

Example

A discovered component is considered not suitable if any of the above conditions
are not met. Specifically, two examples of non-suitability may are:

The component is not suitable by virtue of naming convention differences. All
other metadata (the definition, the domain range, etc. are acceptable).

The component is not suitable because the required component is not an
exact match to the component in the registry. For example, the required
component’s domain range is outside the range of the registered component.

The following example is an excerpt from that provided in Appendix E. 583

 <?xml version="1.0" encoding="UTF-8" ?>

 18

http://www.ebxml.org/specs/ebCCNAM.pdf

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

+ <xs:complexType name="MeasureType">

- <!--

Full content of MeasureType not provided here. See Appendix E.

 -->

</xs:complexType>

- <!--

 ISO 11179-derived type name

 -->

- <xs:complexType name="AcousticSignalFrequencyMeasure">

- <xs:simpleContent>

- <!--

 Domain restriction placed in type

 -->

- <xs:restriction base="MeasureType">

 <xs:totalDigits value="10" />

 <xs:fractionDigits value="3" />

 <xs:pattern value="\d*.\d{3}" />

 <xs:attribute name="measureUnitCode" fixed="HZ" />

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

- <!--

 Element named after business term, "Acoustic Frequency"

 -->

- <xs:element name="AcousticFrequency"
type="AcousticSignalFrequencyMeasure">

 19

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

- <xs:annotation>

- <!--

 Annotation maps element to DoD registered element

 -->

- <xs:documentation source=

"http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358">

- <DoDXMLRegistry>

 <Namespace prefix="TAR">Tracks and Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>ACOUSTIC SIGNATURE FREQ. THE FREQUENCY
OF AN EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE
THOUSANDTH HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

 </DoDXMLRegistry>

 </xs:documentation>

 </xs:annotation>

 </xs:element>

- <!--

 DoD element name made synonymous with camel case business term
through use of substitution group

 -->

- <xs:element name="ACOUST_SIGNA_FREQ"
type="AcousticSignalFrequencyMeasure"
substitutionGroup="AcousticFrequency">

- <xs:annotation>

 <xs:documentation>Business Term</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:schema>

 584

 20

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

585

586

7.1.3.1. Creating XML Element Names from Business Terms

Guidance

Developers SHOULD use business terms instead of ISO 11179 compliant names for 587
element names when appropriate business terms exist; however, the underlying ISO
11179 name SHOULD be captured:

588
589

♦ If developing XML Schemas, a XML Schema data type MAY be created
named after the ISO 11179 name converted to upper camel case (

590
see section

7.1.3.2).
591
592

♦ 593
594
595
596
597
598
599

If developing in DTDs, a fixed ‘type’ attribute MAY be created referencing the
ISO 11179 name or an XML Comment MAY be used.

More than one business term may exist for a single element, such as when an
acronym is commonly used instead of the full business name. If developing XML
Schemas, extra synonymous business terms MAY be created and declared in the
substitution group of the primary business term.
Acronyms and abbreviations MAY be part of a business term, but MUST conform to
the guidance of Section 7.1.2. 600

601 Explanation

The ebXML deliverables define the concept of a Business Term. Business terms are
commonly recognized words that are more appropriately used as

602
XML element

names, rather than the often-esoteric
603

ISO 11179 conventions. Business terms
improve the readability of

604
schemas and instances, while the ISO 11179 names

provide more precise and structured semantics. Both are desirable when business
and technical personnel are working together to define

605
606

XML grammars for the
exchange of business information by IT systems.

607
608
609
610
611
612
613
614
615
616

617

This guidance may appear confusing because on one hand the creation of ISO
11179 names is recommended, but on the other, business terms are recommended
for XML element names. The guidance is to define ISO 11179 standard names and
capture those names through the use of the Schema “type” while retaining
readability through using business terms as element names. Since the XML Schema
is XML, those analysts interested in finding out, for instance, that “National Stock
Number” is a business term for “Federal Material Item. Identification. Details” can
look at the underlying type name of the <NationalStockNumber> tag.

Examples

See previous example and appendix E. 618

619
620

7.1.3.2. Creating XML Component Names from ISO 11179 Data Elements

 21

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

621 Guidance

XML components MAY be named after ISO 11179 data element names: 622

♦ 623
624

♦ 625

♦ 626

627

XML Elements SHOULD be named after ISO 11179 data element definitions
when business terms do not exist.

XML Attributes SHOULD be named after ISO 11179 data elements.

XML Schema data types MUST be named after ISO 11179 data elements.

Explanation

ISO 11179 part 5 provides a standard for creating data elements. This standard
employs a dot notation and white space to separate the various parts of the element
and multiple words in a part respectively. In order to meet XML requirements for
component naming, the ISO 11179 name must be converted to a

628
629
630

Name Token. 631
632 The ISO 11179 part 5 standard provides a way to precisely create a data element

definition and name. Using or referencing this name in a schema provides analysts
with a better understanding of XML component semantics, while using

633
business

terms as element names improves readability.
634
635
636
637

Requiring types to conform to ISO 11179 conventions will facilitate automated
analysis of schema components during any harmonization efforts.
The upper and lower camel case conventions are adopted from ebXML. 638

639 Example

In the example of Section 7.1.3, the type ‘AcousticSignalFrequencyMeasure’ was
created from the ISO 11179 standard data element ‘Acoustic Signal. Frequency.
Measure’.

640
641
642

643

644

7.1.3.3. Choosing XML Component Names

Guidance

The selection of XML component names MUST be a thoughtful process involving
business, functional, database, and system subject matter experts. In the

645
schema

design process, DON XML developers MAY use temporary or dummy XML
component names while consensus is being reached on more carefully designed
and defined names.

646
647
648
649

The creation and/or selection of XML component names and business terms: 650

♦ 651
652
653
654

MUST involve domain subject matter experts (operational personnel, program
managers, etc), functional data experts (database administrators, functional
data manager, data modelers, etc…) and software developers. Application
developers MUST NOT be left on their own to perform this function.

 22

http://www.ebxml.org/

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

SHOULD use definitions (from the DDDS, COE Data Emporium, MIL-STDs,
or other credible standard data element definitions).

♦ 655
656

♦ SHOULD NOT create a Business Term just for the sake of having one; the
existence and use of business terms SHOULD be determined by consensus
of a community of users. When a business term is not apparent or does not
exist, the ISO 11179 compliant name MAY be used as the XML component
name instead.

657
658
659
660
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

Explanation

At a business level, the primary function of XML is to provide a meta-language for
rigorously specifying the syntax of information exchange. Since information
exchange involves multiple parties (at a minimum one sender and one receiver),
XML specifies agreements between parties within a community of interest for a
particular domain of information. XML itself does not require or provide a mechanism
for defining semantics (precisely what is meant by a particular term); however, to
achieve interoperability, both the syntax and semantics must be explicitly defined.
The process of selecting proper component names and reaching agreements on the
definitions is primarily a business function of XML and MUST involve all
stakeholders. Frequently, application developers who are on the leading edge of
technology will understand the benefits of XML and will implement it in IT systems
before business personnel become involved. As a result, XML component names
often are not useable by an entire community, seriously impeding widespread ,
understanding and therefore interoperability.

7.2. Schema Design 677

678

679
680

7.2.1. Schema Languages

Guidance

Only W3C-recommended languages SHALL be used within the DON for describing
documents. Specifically, the DTD and the W3C recommended XML Schema
language SHALL be used.

681
682

All activities developing data-oriented schemas in DTD syntax SHOULD plan on
migrating to

683
XML Schemas. 684

DON XML developers MAY elect to use DTDs for markup of data that is strictly
document-oriented (paragraph, chapter, appendix...); however, the XML Schema
language is preferred.

685
686
687

688 Explanation

Appendix H provides a business explanation for the adoption of XML Schemas over
DTDs.

689
690

For activities that intend to migrate towards XML Schemas, an excellent free XML
schema tutorialvii is available from www.xfront.comviii; it provides both detailed 692

691

 23

http://www.xfront.com/xml-schema.html
http://www.xfront.com/xml-schema.html
http://www.xfront.com/

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

presentations and hands-on labs. Additionally, a series of XML Schema best
practice papersix is available. These papers provide more XML Schema
development technical detail than is provided here.

693
694
695

696 Example

The DON guidance is to use XML Schema for creation of XML components;
however the following are some example business case considerations for selecting
DTD’s over XML Schemas as the schema language them:

697
698
699

700
701
702
703
704
705
706
707
708
709

710
711
712

713
714
715

716

717
718
719
720
721
722
723
724
725
726
727
728
729
730

• An organization has an existing production XML implementation that meets all
current and projected future requirements. It employs DTDs; and there is not
sufficient funding in the budget to migrate to XML Schemas. In this case,
there is no business case for investing in XML Schemas in the near future.
Some points to note:

o The application has achieved production status. It is not a pilot or
demo.

o There are no projected future requirements that would benefit from a
Schema based approach. For data oriented applications, this situation
is possible but unlikely.

• An organization’s budget is so severely limited for migration to XML Schema
such that investing in Schema development would impact the organizations
ability to meet in-year operational requirements.

• An organization uses XML as a web-enabled version of SGML for markup of
content that is primarily page-oriented (vice data oriented), and DTDs already
exist for the page-oriented markup.

7.2.2. Recommended Schema Development Methodology

Guidance

DON XML developers SHOULD adopt the practice of developing schemas based on
information exchange requirements identified via business process modeling.
Information and process modeling and the XML schema creation process SHOULD
be separate and distinct steps.
Schema development SHOULD take place as a team effort with functional data
experts, business experts, program managers, and IT specialists all involved. The
DON XML WG also strongly encourages collaboration among activities developing
schemas within related information domains.
Conversely, schema development SHOULD NOT be solely the function of IT
specialists. XML component names in general SHOULD NOT be taken directly from
underlying relational database table and column names, unless the elements within
that database have been named and created in accordance with a DON or DoD
standard that represents concurrence by an entire Community of Interest (COI).

 24

http://www.xfront.com/BestPracticesHomepage.html
http://www.xfront.com/BestPracticesHomepage.html

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

731 Explanation

732
733
734
735
736
737
738
739
740
741
742
743
744
745

The single most critical factor in creating logical, reusable schemas for information
exchange in XML is the separation of the information modeling process from the
schema creation process. Information should be modeled independently of creating
a schema. This allows stakeholders to focus on creating logical, consistent
representations of information, without getting distracted by the myriad of schema
design options that have nothing to do with the information. Once an agreed to
information model has been created, mapping rules from the model to a schema can
be used or developed, which make schema creation straightforward. Just as this is
the most important step, it is the most often neglected.
Typically, newly trained or inexperienced developers begin creating schemas on an
ad hoc basis, without the involvement of business functional experts and without a
carefully crafted information model that lends itself to expressing hierarchical, object-
like relationships. Often, application developers working without management and
functional involvement and without an appropriate model are tempted to create XML
quickly and easily from relational database table and column names. XML
components produced in this fashion have very terse, abbreviated and generally
unreadable names, which are often not reusable by other systems or agreed to by
the community of users.

746
747
748
749
750
751
752
753
754
755
756

The result of the actions in the above paragraph is inevitably a poorly-designed set
of schemas with little reusability, extensibility, or readability; this translates into
rework later at additional expense.
Because most uses of XML can be conceptualized as business processes in which
communities of users share information, successful schema development should be
based on analyzing, documenting, and reaching consensus on the business
processes, the parcels of information (documents) exchanged in those processes,
and the structure of a commonly-understood vocabulary / grammar for creating the
documents.

757
758

The focus of XML schema and component development should be on creating XML
languages that are understood by a community of stakeholders that engage in
business processes together. In this context, the term business process is used in a
larger scope than just business-to-business transactions (B2B) where products are
bought and sold for money. Some examples:

759
760
761
762
763

♦ 764
765
766
767
768
769
770

A supply activity wishes to make available, to its community, reference tables
of code lists in an XML format. Here the process is consumer-to-application
(C2A) / application-to-consumer (A2C) and application-to-application (A2A).
A user (consumer) may request the table data via a web-browser (C2A); the
activity receives the request and returns XML that is transformed to HTML
(A2C). Also, an application may request and receive the same information in
XML format via SOAP (A2A).

 25

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

♦ 771

772
773

♦ 774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

A C4ISR application wishes to make air tasking order information, from
messages, available on a publish-subscribe or broadcast basis to both
operators and other C4ISR applications.

A logistics activity wishes to store product data from an acquisition in a
neutral format so that at some future point it can be parsed and read into any
database for future processing by other activities needing it. In this case the
process can be thought of as consumer-to-consumer (C2C), because the
product data that is received by the acquiring consumer should be
represented in an XML language that is understood by other consumers
within the community.

Relational modeling languages, like IDEF1x, are appropriate for logical and physical
enterprise data modeling of complex systems or data warehouses that will be
implemented primarily by relational databases. However, modeling hierarchical,
object-like relationships expressed by XML is more difficult in this language.
Relational modeling focuses the efforts of the modeling exercise on the efficient
representation of data as a set of normalized entities; this simplifies the process of
creating relational databases but complicates the process of understanding the
hierarchical nature of information, and it often hides or neglects critical object-like
aspects of the domain.
XML is an information-sharing meta-language that is inherently hierarchical, lending
itself to be better represented via graphical modeling languages that allow capture of
object relationships vice key/key-reference relationships of normalized entities. The
DON XML WG recommends that activities interested in capitalizing on XML as an
information exchange medium take the time to learn UML. UML is rapidly becoming
the de facto industry standard for system requirements analysis and business
process and information modeling as well as software design. It provides a common
language that business experts, managers and IT specialists can use throughout all
phases of a system’s implementation (requirements discovery, analysis, business
rules and workflow documentation, software design, and deployment).

794
795
796
797
798
799
800
801

Many data-modeling languages have an object orientation; however, products
supporting the direct creation of XML DTDs and/or Schema from UML are becoming
available, and the UN/CEFACT Electronic Business Transition Working Groupx is
standardizing a

802
UML to XMLxi mapping that will even further improve future tool

support. By taking the time to create UML static structure models of information
exchange requirements, schemas can be automatically generated and updated as
standards and models evolve. This will ultimately drive down the cost of
implementing XML based systems.

803
804
805
806
807
808
809
810
811

UML to XML tools are in their infancy. Due to lack of a standard, each tool does it
differently at present. However, by taking the time to learn UML now, and beginning
the process of creating information models in UML, DON activities will be well
positioned to capitalize on future advancements.

 26

http://www.ebtwg.org/
http://www.ebtwg.org/projects/u2xdr.html

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

812
813
814
815

Regardless of the modeling language chosen, it is useful to construct and use
information and data models that are independent of XML-specific syntax. This will
allow stakeholders involved in schema design to separate information-modeling
decisions from XML design decisions.
The UN/CEFACT adopted Unified Modeling Methodology (UMM), based on UML,
can be used for the process modeling; it will yield a business process model
expressed in an XML syntax such that it can be universally understood and
implemented. The DON XML WG expects to evaluate the UMM and other modeling
methodologies for applicability to DON data domains for possible official adoption at
a later date.

816
817
818
819
820
821

822 Examples

A proposed procedure for schema development is presented in Appendix E. It is
non-

823
normative, provided as an example only. 824

825

826

7.2.3. Capturing Metadata

Guidance

DON XML developers SHOULD, within reason, capture as much metadata as
possible in a

827
schema. 828

The schema language chosen (DTDs or XML Schema) will impact the amount of
metadata that can be expressed and how well applications can access the metadata
for processing.

829
830
831

♦ 832
833

♦ 834
835

♦ 836
837
838
839
840
841
842
843
844
845
846
847
848
849

For DTDs, XML comments MAY be used to annotate the DTD with definitions
and constraints, which the DTD syntax is unable to express.

Alternatively, for DTDs, fixed attributes MAY be used to capture the
metadata.

For XML Schemas, metadata may be captured in a number of ways, as is
discussed in the following sections. Guidance regarding the four primary ways
of capturing metadata is as follows:
¾ Domain value restrictions SHOULD be captured by the use of built-in

Schema data types, the construction of custom data types, the
assignment of enumerations to XML component values, the use of regular
expressions, and minimum / maximum value constraints.

¾ Metadata regarding the structure and cardinality of components SHOULD
be captured by expressing element order as either a (set of) choice(s), an
ordered sequence, or unordered. Additionally, the exact number of times
an element can, or must, be repeated MAY be specified.

¾ Logical relationships or relationships to existing data dictionaries and
models (such as the DDDS, ebXML core components, or COE Reference
Data Sets) may be expressed by the use of types or Schema annotations.

 27

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

¾ An element’s definition, sources of definitions or code lists, version

information, and other metadata MAY be captured by the use of
850
851
852

♦ 853
854

♦ 855
856
857
858

859

Schema
annotations.

Developers MAY consider the creation of a verbose semantic schema and a
compact schema strictly for document validation purpose.

Alternatively, schema documentation and annotations MAY be provided by
creating a schema guide that is URL-accessible and referenced in the header
of the schema. Tools such as XML Spy 4.x provide excellent documentation
generation capabilities that can partially automate this process.

Explanation

The schema is more than just a document structure validation tool. The XML
Schema language, in particular, has a rich feature set for capturing extra metadata
that can provide:

860
861
862

♦ 863

♦ 864

♦ 865
866

Data element definitions through the use of annotations

Detailed domain value constraints

Logical data element pedigree through the use of annotations and types.
By capturing this metadata, the schema becomes an interoperability tool, because
analysts can read it and understand what the various XML components mean and
where they are derived from. Several sources of metadata exist that can be used to
derive XML components; these include:

867
868
869

♦ The DoD XML Registryxii 870

♦ The initial set of ebXML core components (see the ebXML Technical
Reportsxiii on Core Components)

871
872

♦ 873

♦

The DDDS

The COE Data Emporium Reference Data Setsxiv. 874

♦ Various Military Standards (MIL-STD-6040xv, 6011, 6016, etc.) 875

♦ 876
877
878
879
880
881
882
883
884
885

Various commercial standards (ISO, ANSI, IEEE etc.)
With the exception of the DoD XML Registry, the sources named do not provide
readily reusable XML component names; however, they do provide agreed to,
reusable data element definitions.
A fully documented XML Schema may be quite verbose. Such “semantic” Schemas
can provide critical insight to analysts and improve interoperability by making use of
the information in the Schema. However, they contain much more information than is
really necessary for document structure validation. A “compact” Schema that is
equivalent to the “semantic” Schema may be quickly built for validation purposes.
Having both a full “semantic” Schema and a “compact” schema may be appropriate

 28

http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://diides.ncr.disa.mil/shade/refdatasets.cfm
http://www-usmtf.itsi.disa.mil/std_6040.html

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

886
887
888
889
890

891

for activities wishing to provide extensive Schema annotations, or underlying type
relationships while having a smaller schema used strictly for validation.
A schema guide document that fully defines and explains each component in
schema and the schema’s logical structure is an alternative to creating a fully
documented semantic schema.

Example

Appendix E provides an example that combines several of the concepts discussed
so far, including capturing definitions and relationships.

892
893

894

895

7.2.3.1. Application Specific Metadata

Guidance

Application-specific metadata (such as SQL statements or API calls) MUST NOT be
included in

896
instances or schemas that describe payloads of information to be

exchanged between applications.
897
898
899
900
901

902

Conversely, XML MAY be used to capture application specific metadata and
initialization parameters so long as the XML instance is separate from information
payload XML.

Explanation

Including application-specific metadata in an instance unnecessarily clutters the 903
document, increases bandwidth requirements, and is only useful to one application.
However, an emerging use of XML to capture application specific initialization
parameters (in place of the traditional “ini” files) is very useful. The only prohibition is
that application initialization XML and XML used to expose or exchange business
information must be physically separate documents.

904
905
906
907
908

909
910
911

Example

Example of an XML document that provide JDBC initialization parameters to an
application

- <JDBCConfig>
 <UserName>user</ UserName >

 <Password>some_password<Password>

<URL>jdbc:oracle:thin:@111.111.1.111:5
51:dscr</URL>

<Driver>oracle jdbc driver OracleDriver</

 29

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

Driver>

 </JDBCConfig>

 912
913 Example of an XML document carrying a “payload” of business information:

- <UnitLatitude MeasureUnitCode=”DEG”>30.500
 </ UnitLatitude >

914

915

916

1

7.2.3.2. Capturing XML Component Definitions

Guidance

DON XML developers MUST document XML element and XML Schema type
definitions through

917
XML comments, XML Schema annotations, a schema guide, or a

data dictionary. These definitions SHOULD be related to underlying ISO 11179 data
element definitions.

918
919
920
921 Definitions SHOULD be brief and when possible SHOULD be taken from existing

standard data element definitions, such as those provided by the DDDS, ebXML
Core Components, COE Reference Data Sets, or other Military Standards (MIL-
STD-6040, 6011, 6016, etc.)

922
923
924
925
926

Definitions SHOULD contain URLs or other pointers to the definition’s source, so
that analysts can look up additional information.
Developers MAY extend the XML Schema annotation <xsd:documentation> tag by
further marking up information provided with custom tags. No standards for this yet
exist; however, the general guidelines of this document should be followed, and
custom

927
928
929

metadata tag names should follow the naming convention of the source data
dictionary.

930
931
932 Developers MAY elect to publish schema documentation in a separate schema

guide; however, if this option is chosen, the schema must be URL-accessible and
referenced in the schema header.

933
934

935
936
937
938
939
940
941
942

Explanation

Many activities in the DON are rapidly developing schemas as part of initiatives such
as TFWeb. Mandating that schema developers take the time to provide element and
Schema type definitions will facilitate identifying commonalities and reusable
components. Furthermore, it will start to enforce some rigor and thought in the
creation of XML components, as business and technical experts come together to
create definitions for components and map their context specific elements back to
applicable DON and DoD enterprise data standards.

 30

http://diides.ncr.disa.mil/shade/refdatasets.cfm
http://www-usmtf.itsi.disa.mil/std_6040.html
http://www-usmtf.itsi.disa.mil/std_6040.html

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

Section 7.4 provides guidance on use of XML elements vice attributes. It is the DON
XML WG’s recommendation that attributes be minimized, and only used to provide
supplementary metadata necessary to understand the business value of an XML
element. By adopting this convention, and that of naming attributes in

943
944
945

camel case
according to

946
ISO 11179 conventions, attributes will be reasonably self-explanatory

and therefore not require a definition in most cases.
947
948

949 Example

Appendix E provides a consolidated example of capturing definitions in XML
Schema.

950
951

Examples Section 6.1.2 also illustrates these concepts. 952

953

954

7.2.3.3. Enumerations and Capturing Code Lists

Guidance

DON XML schema developers SHOULD use XML Schemas to express enumeration
constraints on

955
XML element and attribute values, when such enumerated lists are of

reasonable length and when code lists are considered stable (not likely to change
frequently).

956
957
958
959
960
961
962
963

964
965
966
967
968
969
970
971

The decision to explicitly enumerate in a schema SHOULD be made by program
managers based on the resulting size of the schema, bandwidth availability, and
validation requirements.
Code lists, from which enumerations are taken, SHOULD be referenced by URI or
other pointers so that analysts can look up code values.

Explanation

The DoD frequently represents data element values as codes rather than as free
text. Codes are much easier for an application to understand and process because
they are taken from a finite list of possible values, each with agreed-upon semantics.
Application developers create software to execute actions based on those code
definitions and a specified set of business rules. XML can be used to exchange data
that uses codes to abbreviate information, and the schema can be used to provide
metadata about codes and their associated definitions (reference tables). Again, the
way this is accomplished depends on the schema language chosen, with XML
Schemas offering the most functionality. Capturing a reference to a list of valid
codes and code values will greatly enhance implementations and allow future
analysis to identify standard code reference tables. However, for code lists that
historically change frequently, a URI pointer to the authoritative code list source is
preferable.

973
974
975
976
977

972

 31

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

978 Example

A DTD example of an element taken from the MIL-STD-6040 (USMTF) with an
enumerated set of possible values and an

979
XML comment referencing the source of

the code definitions.
980
981

<!ELEMENT Casualty EMPTY>

<!ATTLIST Casualty casualtyCategoryCode (1 | 2 | 3 | 4)
#REQUIRED>

<!-- casualtyCategoryCode

Definition: A CATEGORY DENOTING THE EFFECT OF A CASUALTY ON A
UNIT'S PRIMARY AND/OR SECONDARY MISSION AREAS.

Source: MIL-STD-6040 Baseline 2001 FFIRN 1207 FUDN 0001 -->

 982

7.3. Document Annotations 983

984
985

Guidance

DON XML schema developers MUST provide carefully thought out comments within
schemas and stylesheets, which provide basic information necessary to use and
understand the document.

986
987
988
989

990
991
992
993

In general, Instances SHOULD NOT be documented; however, there may be
situations where it is appropriate.

Explanation

Just as it is good programming practice to document application code using a coding
standard, it is important that XML schemas and stylesheets be well documented in a
standard fashion. The following paragraphs provide some recommended guidance.
The simplest way to express annotations is through the use of XML Comments.
Comments can be inserted anywhere in an XML

994
document after the XML

Declaration.
995
996

XML Schema annotations provide a more flexible, extensible way to document
Schemas as illustrated by many examples in this document.

997
998

999

1000

7.3.1. Document Versioning

Guidance

Version information for instances, schemas, and stylesheets MUST be available via 1001
document annotations (XML comments or Schema annotations) or through built in
attributes where the W3C syntax allows.

1002
1003

 32

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

1004
1005
1006
1007
1008

1009

1010
1011

Explanation

Having a schema's version number available to developers will assist in creating
implementation that will maintain backward compatibility. Version information is also
necessary for stylesheets in order to determine which version of a stylesheet
correctly transforms an instance that conforms to a version of a schema.

7.3.1.1. Versioning DTDs

Guidance

DTD version information SHOULD be captured as an XML comment in the header
of the DTD, and MAY be captured as a fixed attribute of the root element or MAY be
appended to the DTD file name to uniquely identify it.

1012
1013
1014
1015

1016

Another option is to append a version number to the DTD name, thus uniquely
identifying it from previous versions.

Explanation

DTDs offer two means of documenting version number. The most straightforward is
to put the DTD version number in the header XML comment. A second method is to
declare a fixed schema version

1017
1018

attribute to the XML Root Element. This will make
the version generally available to applications via an

1019
API call. 1020

1021
1022
1023
1024
1025
1026
1027

1028

Uniquely identifying a DTD name by appending a version will prevent applications
that process a different version of the same schema from validating the instance.
This may or may not be desirable. However, since DTD do not have a built in
version attribute like XML Schema, this is one strategy that will allow an application
to catch version mismatch.
A best practice for DTD versioning has not been identified; therefore developer
feedback is encouraged.

Example

<?xml version='1.0' encoding='UTF-8' ?>

<!ELEMENT root EMPTY>

<!ATTLIST root schemaVersion CDATA #FIXED '1.0' >

1029
1030
1031

Example of a versioned DTD name: “rootV1.1.dtd”
Providing version information in an XML comment in the header of a schema is
discussed in Section 7.3.2. 1032

1033 7.3.1.2. Versioning XML Schemas

 33

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

1034
1035
1036

1037

Guidance

XML Schemas MUST include a version using the ‘version’ attribute of the XML
Schema specification.

Explanation

The schema header as discussed in Section 7.3.2 provides a uniform method to
capture a consistent body of information required for a schema. However,
developers can make version information more easily available to applications
through the use of the version attribute as shown in the example.

1038
1039
1040
1041

1042 Example

Example of using the version attribute of and XML Schema to capture schema
version information:

1043
1044

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified" version="1.0" >

...

</xsd:schema>

1045

1046

7.3.1.3. Versioning Stylesheets

Guidance

A stylesheet MUST contain both its own version number (by using the built-in
version attribute of the

1047
XSLT language) and references to the name and versions of

the
1048

schema that describe instances upon which the stylesheet performs correctly. 1049
1050

1051
1052
1053
1054
1055
1056

1057

Explanation

Tracking versions of stylesheets is very important because a new version of a
stylesheet may or may not correctly transform an instance conforming to an old
version of a schema. Explicitly asserting in a stylesheet which versions of a schema
are supported will alleviate potential interoperability issues as implementations
evolve.

Example

See example provided in Appendix F. 1058

1059 7.3.2. Headers

 34

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

1060 Guidance

To promote interoperability, every schema, stylesheet, or instance MUST contain
some basic metadata.

1061
1062
1063

1064
♦ 1065

♦ 1066

♦ 1067

♦ 1068

♦ 1069
1070

♦ 1071
1072

♦ 1073

♦ 1074
1075

♦ 1076

♦ 1077
1078

♦ 1079

♦ 1080
1081

1082
♦ 1083

♦ 1084
1085

♦ 1086

♦ 1087

♦ 1088

♦ 1089

♦ 1090

The following metadata SHOULD be provided:

7.3.2.1. Schema :
Schema Name

DoD Namespace(s)

Navy Functional Data Area [Ed Note: insert URL to DMI document that defines]

URL to most current version

For XML Schema, other Schemas imported or included to include DoD
Namespace and version Schema file name, and URL.

For DTD, external entities referenced to include DoD Namespace and version
(in the case of parameter entities that are modular DTDs)

A description of the purpose of the schema

The name of the application or program of record that created and and/or
manages the schema

The version of the application or program of record

A short description of the application interface that uses the description. A
URL reference to a more detailed interface description may be provided

Developer point of contact information to include activity, name and email

A change history log that includes change number, version, date and change
description

7.3.2.2. Stylesheets:
Stylesheet Name

A list of schemas and XSL processors that the stylesheet have been tested
against

The DoD Namespace where the stylesheet is registered

Navy Functional Data Area of the application that makes use of the stylesheet

URL to most current version

Other stylesheets imported to include name and URL

A description of the purpose and function of the stylesheet

 35

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

♦ 1091

1092

♦ 1093

♦ 1094
1095

1096
♦ 1097

1098
1099

1100

Application or program of record (with version) responsible for developing and
maintaining the stylesheet

Developer point of contact information to include activity, name and email

A change history log that includes change number, version, date and change
description

7.3.2.3. Instances
The name and URL of the schema that validates, and the stylesheet (if any)
that correctly transforms it, if these are not specified already as part of the
instance.

Explanation

Other interested parties must be able to read a document and understand how to
implement it or use information from it. Much of the information captured in a header
XML comment can be better made available to applications through the use of fixed
attributes or XML Schema annotations. However, having a consistent set of header
information in a consistent location in an XML document will promote better
configuration management and interoperability as methods for making this
information available to applications are standardized. While examples are provided
that show the above information captured in a single comment after the

1101
1102
1103
1104
1105
1106
1107

XML
declaration, this should not discourage innovative developers from providing the
same information as Schema annotations (possible with custom markup inside a
<xsd:documentation> tag.) Some information may also be captured as fixed
attributes if developing in DTDs, as illustrated by previous examples.

1108
1109
1110
1111
1112

1113 Example

Appendix F provides non-normative examples of document headers. 1114

7.4. Attributes vs. Elements 1115

1116 Guidance

The use of attributes SHOULD be carefully considered . Attributes, if used,
SHOULD provide extra metadata required to better understand the business value
of an element.

1117
1118
1119
1120

♦ 1121

Some additional guidelines are:

Attribute values SHOULD be short, preferably numbers or conforming to the
XML Name Token convention. Attributes with long string values SHOULD
NOT be created.

1122
1123

♦ 1124
1125

Attributes SHOULD only be used to describe information units that cannot or
will not be further extended, or subdivided.

 36

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

Information specific to a single application or database MUST NOT be
expressed as values of attributes (see Section 7.2.3.1)

♦ 1126
1127

♦ 1128 Attributes SHOULD be used to provide metadata that describes the entire
contents of an element. If the element has children, any attributes SHOULD
be generally applicable to all the children.

1129
1130

1131
1132

Explanation

One of the key schema design decisions is whether to represent an information
element as an XML element or attribute. Once an information element has been
declared an attribute, it cannot be extended further; for this reason and to promote
better uniformity within the DON, the use of attributes is not encouraged.

1133
1134
1135

1136 Example

In Example 1, the code KTS (for knots) provides extra metadata required to
understand the ‘business value’ of the element – 600. It answers the question, “600
what?”

1137
1138
1139
1140
1141

In the other examples, several appropriate ways of expressing coded values are
illustrated.

Example 1:

<TargetVelocityMeasure measureUnitCode=”KTS”>600</
TargetVelocityMeasure>

1142
1143

Examples of inappropriate attribute usage

Example 2:

<TargetVelocity measure=”600” measureUnitCode=”KTS”/>

Example 3:

<CasualtyCategoryCode definition=”[TRAINING ACTIVITY ONLY]
EQUIPMENT CASUALTY EXISTS BUT WILL NOT IMPACT
TRAINING WITHIN 30 DAYS.”> 1</CasualtyCategoryCode>

1144
1145
1146
1147
1148
1149
1150
1151

In example 2, both the business value and descriptive metadata are attribute values.
This provides no mechanism for applications to determine which piece of information
describes the other. In example 3, the attribute is used to provide a verbose
definition while the code value is the element contents; because XML parsers
normalize white space in attribute values, attributes are inappropriate for use in this
manner.

 37

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

 1151

8. Points of Contact 1152

1153

1154

DON XML WG Government Lead:
Michael Jacobs, Jacobs.Michael@hq.navy.mil , (703) 601-3594 1155

1156 DON XML Technical Lead and Editor:
Brian Hopkins, xosys@sbcglobal.com, (858) 793-7369 1157

1158

9. Document History 1159

1160

1161

1162
1163
1164

Initial DON XML Developer’s Guide 29 October

This document is the initial XML Development guidance promulgated by the DON
XML WG; it represents an abbreviated version of the full 9 October Consensus Draft
titled “XML Developers Guide – 9 October”. It did not go through the full consensus
process as described by the DON XML WG Operating Guidelines and therefore
does not represent a consensus of the entire team. This document was produced by
key individuals of the DON XML Technical Team and Steering Group in order to
support the Task Force Web (TFWeb) pilot project milestones.

1165
1166
1167
1168

1169
1170
1171
1172
1173

1174
1175

1176
1177

1178

1179
1180

1181

Initial DON XML Developer’s Guide V1.1
Still titled “Initial,” this document represents the first minor revision to the 29 October
Developer’s guide. While it is only a “minor” revision, the changes are significant.
The document should be review thoroughly.
Summary of structural and global changes:

• Section 3 and 4 reorganized and reworded. Second paragraph of Section 3
removed as was redundant.

• Section 7 (DoD XML Registry) moved to Section 5, renumbered all other
sections.

• Added line numbers.

• Added Appendix H to provide a business explanation of the advantages of
XML Schemas over DTDs. Removed explanation from Section 7.

• Changed COE to DoD in all references to Registry and Namespaces.

 38

mailto:Jacobs.Michael@hq.navy.mil
mailto:bhopkins@logicon.com
http://quickplace.hq.navy.mil/QuickPlace/navyxml/PageLibrary85256A9A006C6456.nsf/h_C4015D0B54EF7A3085256AAF00496AE5/606B84B7383581BD85256AB9001165D9?OpenDocument

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

1182
1183
1184

1185
1186

1187
1188

1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201

1202
1203
1204
1205
1206
1207
1208
1209

• Introduced new term, Voluntary Consensus Standard. See Appendix G. This
term is used extensively through document to replace references to OASIS,
BizTalk, RossettaNet, etc…

• Removed the Word “Initial” from the title.
Summary of Significant Guidance Changes

• Section 3 – Terminology and Conventions (V 1.0 section 4)
o Moved RFC 2219 reference here.

• Section 4 – Implementation Requirements (V1.0 section 3)
o Reorganized guidance into 4 subsections, 2 of which are new. Section

4.1 specifically establishes the requirements level of the document as
guidance, 4.2 specifically names the program manager as the final
conformance authority, and 4.4 provide additional clarification as to the
guidance applicability.

o Specifically gives this document precedence over other Navy guidance
for matters pertaining to XML.

• Section 5 – DoD XML Registry
o Reuse of Voluntary Consensus Standards XML components is mentioned

first.
o Additionally, emerging DoD XML policy is referenced that will require

registration of VCS tags used.

• Section 6 – Recommended XML Specifications
o Guidance changed to clarify the precedence of accredited standards

bodies (like IEEE, UN/ECE, ISO, and ANSI), the W3C, and Voluntary
Consensus Standards bodies like OASIS, RossettaNet and others.

o OASIS is given precedence equivalent to accredited standards bodies.
o Precedence is given to W3C final recommended technical reports relating

to XML.
o So that W3C work does not gain “instant credibility”, W3C working drafts

must be at the second stage before being considered over other
competing standards.

1210
1211
1212
1213
1214
1215
1216

o Structure of guidance reoriented to be centered on kind of application
(production, pilot, demo) vice W3C status.

o Added guidance on SOAP and SAX.
o Provide clarification in explanation section of relationship of ebXML to

other organizations.

 39

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

1217
1218

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

1236
1237

1238
1239
1240
1241
1242

1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256

o Non-W3C draft specification given same status as W3C Working Draft
level products.

• Section 7 – XML Conventions
o Section 7.1 – XML Components

� 7.1.2 Usage of Acronyms and Abbreviations: Changed guidance on
acronyms and abbreviations to remove the prohibition on use of
abbreviations. Added a program manager’s discretion clause and
extra explanation. Basis for usage of abbreviations should be on
belief that it will add to understanding.

� 7.1.3. XML Component Selection and Creation: New section added
to replace V1.0 section 6.1.3. Developed more detailed guidance
on reuse of XML component from DoD XML registry including
criteria for suitability for reuse. New sections with clarified old
guidance, and additional new guidance. Added several paragraphs
to the beginning of this section discussing priority of commercial,
DoD and DON XML component reuse and creation. Order of
precedence is commercial, DoD, then DON. Among commercial,
precedence is given to W3C, the accredited standards bodies
(including OASIS), then other Voluntary Consensus Standards.

• 7.1.3.1 Creating XML Component Names from Business
Terms.

• 7.1.3.2. Creating XML Component Names from ISO 11179
Data Elements: Separated section on creating XML
component names from ISO 11179 data elements and
added more detail. Removed prohibition on using “Details” in
element or type names.

• 7.1.3 Choosing XML Component Names – Bulk of V1.0
Section 6.1.3 is here.

o 7.2 Schema Design
� 7.2.1 Schema Languages – Added in guidance and examples of

when a DTD may be the appropriate schema language. Removed
lengthy explanation, moved to Appendix H and replace wording
with business explanation taken from draft Universal Business
Language (UBL) documents.

� 7.2.3 Capturing Metadata

• 7.2.3.1 Application Specific Metadata – Banned all
application specific metadata from payload instance of XML,
but recommended use of XML as a format for storing
application initialization parameters, as long as this was
done separately from payload XML.

 40

DON XML WG
XML Developer's Guide V1.1 – 1 May 2002

1257
1258

1259
1260

1261
1262
1263

1264

1265
1266
1267
1268
1269
1270

o 7.3 Document Annotations
� 7.3.1 Document Versioning

• 7.3.1.1 Versioning DTDs – Introduces option to append
version information to the end of a DTD name.

• 7.3.1.2. Versioning XML Schemas: Corrected example to
illustrate the use of the built in ‘version’ attribute of the XML
Schema root element.

• 7.3.1.3. Versioning Stylesheets: Removed example.

• 7.4. Attributes vs. Elements: Removed references to and examples
relating to using attributes to capture code definitions. Changed
“Examples” to include one “good” and two “poor” uses of attributes.

 41

DON XML WG
Appendices - XML Developer's Guide V1.1 – 1 May 2002

10. Appendices

The following appendices are presented in draft form. They represent the
understanding and opinion of the editor and are not the consensus of the DON XML
WG. They are provided, as is, and are non-normative.

42

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002

Appendix A – ebXML and the eBTWG
Description

ebXML was a 18-month international project sponsored jointly by OASISxvi and
UN/CEFACTxvii that ended in May, 2001 with the delivery of several specifications,
technical reports and white papers available at www.ebxml.org/specs . The ebXML
deliverables defines an architecture with two distinct views. The Functional Service
View (FSV) defines:

Functional capabilities ♦

♦

♦

♦

♦

Business Service Interfaces

• Protocols and Messaging Services.
In other words, the FSV consists of specifications and standards that describe how
an ebXML compliant system will physically operate to include interfaces, protocols,
and registry/repository operations.
The Business Operational View (BOV) addresses:
a) The semantics of business data in transactions and associated data

interchanges
b) The architecture for business transactions, including:

Operational conventions

Agreements and arrangements

Mutual obligations and requirements
The BOV work focused on two areas. The first focus was on creating a methodology
by which business processes can be modeled as orchestrated collaborations
between business partners who exchange payloads of information (which may be
XML documents). The UMM was chosen as the modeling methodology and a BPSS
was created. Second, the BOV work focused on creating a methodology for creating
reusable components – process components which can be used to build complex
business process models, and information components which can be used to
construct business documents as payloads of ebXML messages. Some of the
ebXML technical reports discuss the concept of core components as universal,
domain independent information entities defined in an XML-neutral syntax. This is
significant because the ebXML authors intentionally did not address how
components (core and domain specific) should be used to produce business
documents (in XML). According to the ebXML architecture, ebXML components exist
as registered objects within an ebXML registry/repository system; the work of
defining production rules for creating XML payloads from registry entries was
deferred. This decision has drawn sharp criticism from some; however, it makes
sense. The ebXML strategy was to address how to represent information (semantics
and context) independently of how it is syntactically expressed as an XML
document; consequently the ebXML technical reports on core components adopt the

1

http://www.oasis-open.org/
http://www.unece.org/cefact
http://www.ebxml.org/specs
http://www.ebxml.org/specs/index.htm

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002
ISO 11179 naming convention for creation of dictionary entries for information
entities. They do not specify how to create XML component names for schemas
describing business documents containing payloads of information.
The ebXML deliverables provide a basis for future work required to make the vision
of global interoperability a reality. OASIS and UN/CEFACT agreed to divide that
work between them with OASIS assuming responsibility for the FSV aspects while
UN/CEFACT took on the BOV portion. Since that time, UN/CEFACT has established
the Electronic Business Transition Working Group (eBTWGxviii),

...for the purpose of continuing the UN/CEFACT's role
in pioneering the development of XML standards for
electronic business. The group was formed to build on
the success of the earlier ebXML Joint Initiative
between UN/CEFACT and OASIS, which delivered its
first set of specifications in May 2001.

One of the key deliverables of this group will be a final Core Component
Specification that will combine and further refine the ebXML Core Component
Technical Reportsxix.
The rest of the information presented in this appendix is taken from the deliverables
of the ebXML project. These documents are works in progress. They may be useful
in selecting data element and XML component names; however, developers must
and should expect the rules and specifications presented here to evolve rapidly.

ebXML Naming Rules
Quoted4 from the ebXML Technical Architecturexx, Section 4.3 Design Conventions
for ebXML Specifications:

“In order to enforce a consistent capitalization and naming convention across all
ebXML specifications "Upper Camel Case" (UCC) and "Lower Camel Case"
(LCC) Capitalization styles SHALL be used. UCC style capitalizes the first
character of each word and compounds the name. LCC style capitalizes the first
character of each word except the first word.

4 Copyright © ebXML 2001. All Rights Reserved.
“This document and translations of it MAY be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation MAY be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this
document itself MAY not be modified in any way, such as by removing the copyright
notice or references to ebXML, UN/CEFACT, or OASIS, except as required to
translate it into languages other than English.”

2

http://www.ebtwg.org/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/ebTA.pdf

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002

1) ebXML DTD, XML Schema and XML instance documents SHALL have the
effect of producing ebXML XML instance documents such that:

• Element names SHALL be in UCC convention (example:
 <UpperCamelCaseElement/>).

• Attribute names SHALL be in LCC convention (example:
<UpperCamelCaseElement lowerCamelCaseAttribute="Whatever"/>)...

3) General rules for all names are:
Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL
remain (example: XMLSignature).

•

• Underscore (_), periods (.) and dashes (-) MUST NOT be used (don't use:
header.manifest, stock_quote_5, commercial-transaction, use HeaderManifest, stockQuote5,
CommercialTransaction instead).”

The following are component-naming rules as quoted from the technical report,
Naming Convention for Core Componentsxxi Section 5.2. They are based on the
ISO 11179 Part 5 draft specification. In reading these understand that:

• Since the publication of this report, the eBTWG has changed “representation
type” to “representation term”:

• These rules apply to creation of ebXML “core components” but may be used
in the creation of DON specific elements as well.

• These initial rules are in being incorporated into the eBTWG’s Core
Components Specification, which is being developed by the Core Component
project team. Developers may choose to use the rules specified in the draft
Core Components Specification rather than these. When that document
reaches final status, this appendix will be updated accordingly. For now the
May, 2001 Core Component Naming Convention rules as specified by the
initial ebXML project are provided for reference.

Rule 1: The Dictionary Entry Name shall be unique and shall consist of Object
Class, a Property Term, and Representation Type.
Rule 2: The Object Class represents the logical data grouping (in a logical data
model) to which a data element belongs” (ISO 11179). The Object Class is the
part of a core component’s Dictionary Entry Name that represents an activity or
object in a context.
An Object Class may be individual or aggregated from core components. It may
be named by using more than one word.
Rule 3: The Property Term shall represent the distinguishing characteristic of the
business entity. The Property Term shall occur naturally in the definition.

3

http://www.ebxml.org/specs/ebCCNAM.pdf
http://www.ebtwg.org/projects/core.html
http://www.ebtwg.org/projects/core.html

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002

Rule 4: The Representation Type shall describe the form of the set of valid
values for an information element5. It shall be one of the terms specified in the
“list of Representation Types” as included in this document.
Note: If the Representation Type of an entry is “code” there is often a need for
an additional entry for its textual representation. The Object Class and Property
Term of such entries shall be the same.
(Example : “Car. Colour. Code” and “Car. Colour. Text”).
Rule 5: A Dictionary Entry Name shall not contain consecutive redundant
words. If the Property Term uses the same word as the Representation Type,
this word shall be removed from the Property Term part of the Dictionary Entry
Name.
For example: If the Object Class is “goods”, the Property Term is “delivery date”,
and Representation Type is “date”, the Dictionary Entry Name is ‘Goods.
Delivery. Date’.
In adoption of this rule the Property Term “Identification” could be omitted if the
Representation Type is “Identifier”.
For example: The identifier of a party (“Party. Identification. Identifier”) will be
truncated to “Party. Identifier”.
Rule 6: One and only one Property Term is normally present in a Dictionary
Entry Name although there may be circumstances where no property term is
included; e.g. Currency. Code.
Rule 7: The Representation Type shall be present in a Dictionary Entry Name. It
must not be truncated.
Rule 8: To identify an object or a person by its name the Representation Type
“name” shall be used.
Rule 9: A Dictionary Entry Name and all its components shall be in singular form
unless the concept itself is plural; e.g. goods.
Rule 10: An Object Class as well as a Property Term may be composed of one
or more words.
Rule 11: The components of a Dictionary Entry Name shall be separated by dots
followed by a space character. The words in multi-word Object Classes and
multi-word Property Terms shall be separated by the space character. Every
word shall start with a capital letter
Rule 12: Non-letter characters may only be used if required by language rules.

5 The term ‘information element’ is used generically in the same context as the term
data element, and should not be confused with XML Elements. An information
element (or entity as ebXML refers to them) can be expressed as any of several
XML components (XML Elements, attributes, or XML Schema data types).

4

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002

Rule 13: Abbreviations, acronyms and initials shall not be used as part of a
Dictionary Entry Name, except where they are used within business terms like
real words; e.g. EAN.UCC global location number, DUNS number [see section
5.1.2 Usage of Acronyms and Abbreviations]
Rule 14: All accepted acronyms and abbreviations shall be included in an ebXML
glossary [read, “...included in the element definition in the schema annotation,
see section 5.1.2].”

Representation Terms
The following extract is provided from a 12 October 2001 draft of the eBTWG core
component specification. It is provided for information only: Here Representation
Term is used vice the earlier Representation Type initially used in the ebXML
technical reports.
Table 6-3 Representation Terms

Represent
ation Term

Definition Links to
Core
Component
Type

Amount A number of monetary units specified in a
currency where the unit of currency is
explicit or implied.

Amount. Type

Code A character string (letters, figures or
symbols) that for brevity and / or language
independence may be used to represent
or replace a definitive value or text of an
attribute. Codes usually are maintained in
code lists per attribute type (e.g. colour).

Code. Type

Date A day within a particular calendar year
(ISO 8601).

Date Time. Type

Date Time A particular point in the progression of
time (ISO 8601).

Date Time. Type

Graphic A diagram, graph, mathematical curves,
or similar representation

Graphic. Type

5

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002

Represent
ation Term

Definition Links to
Core
Component
Type

Identifier A character string used to identify and
distinguish uniquely, one instance of an
object within an identification scheme
from all other objects within the same
scheme.
[Note: Type shall not be used when a
person or an object is identified by its
name. In this case the Representation
Term “Name” shall be used.]

Identifier. Type

Indicator A list of two, and only two, values that
indicate a condition such as on/off;
true/false etc. (synonym: “Boolean”).

Indicator. Type

Measure A numeric value determined by
measuring an object. Measures are
specified with a unit of measure. The
applicable unit of measure is taken from
UN/ECE Rec. 20.

Measure. Type

Name A word or phrase that constitutes the
distinctive designation of a person, place,
thing or concept.

Text. Type

Percent A rate expressed in hundredths between
two values that have the same unit of
measure.

Numeric. Type

Picture A visual representation of a person,
object, or scene

Picture. Type

Quantity A number of non-monetary units. It is
associated with the indication of objects.
Quantities need to be specified with a unit
of quantity.

Quantity. Type

Rate A quantity or amount measured with
respect to another measured quantity or
amount, or a fixed or appropriate charge,
cost or value e.g. US Dollars per hour, US
Dollars per EURO, kilometre per litre, etc.

Numeric. Type

Text A character string generally in the form of
words of a language.

Text. Type

Time The time within a (not specified) day (ISO
8601).

Date Time. Type

6

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002

Represent
ation Term

Definition Links to
Core
Component
Type

Value

Numeric information that is assigned or is
determined by calculation, counting or
sequencing. It does not require a unit of
quantity or a unit of measure

Numeric. Type

The following representation terms apply to aggregate Core Components or Core
Component types.

Table 6-4 Other Representation Terms

Represent
ation Term

Definition Links to
Core
Component
Type

Details The expression of the aggregation of
Core Components to indicate higher
levelled information entities

Not Applicable

Type The expression of the aggregation of
Core Components to indicate the
aggregation of lower levelled information
entities to become Core Component
Types. All Core Component Types shall
use this Representation Term

Not Applicable

Content The actual content of an information
entity. Content is the first information
entity in a Core Component Type

Used with the
content
components of
Core
Component
Types

The ebXML core components technical reports require that name of “aggregate
information entities” use the special representation type, ‘details’. DON XML
developers may omit the term ‘details’ from the end of tag names when XML
element names are generated from the ISO 11179 name. For example, the ISO
11179 data element name 'Address. Details' would be represented in the XML
instance as <Address>; in the XML Schema that describes the instance, the

7

DON XML WG
Appendix A XML Developer's Guide V1.1 – 1 May 2002
element Address would be created from the ISO 1179 derived Schema type
AddressDetails.
The Representation Terms provided by ISO 11179 may not be adequate for a
number of engineering, scientific and operational concepts. In these cases, use of
other term names temporarily, such as until the list of types is expanded, MAY be
considered; however, do this with caution.

8

DON XML WG
Appendix B XML Developer's Guide V1.1 – 1 May 2002

Appendix B – Schema Development
Possible Schema Development Procedure Summary

The following is presented as a possible procedure for developing schema. It does
not represent the consensus of the DON XML WG; rather, it is presented for your
consideration and feedback. It is purely developmental; all or none of it may be
found useful.

STEPS

In creating XML components according to these conventions, try the following :
Step 1. Analyze the business processes in which your application will exchange,

use or store information. Understand who the consumers (both human and
machine) of the information your application provides are. The DON XML WG
recommends the use of the UMM and UML for this process; however, any
model that provides a basic understanding of how information will be
exchanged across system boundaries (application to application, application
to human, or human to application) can provide a basis for development as
more rigorous modeling techniques, such as the UMM, are learned. The
business process modeling should identify and name actors (persons,
organizations, or systems) that participate in the process. The roles that each
actor plays should also be identified and named. It is important to separate
the name of the actor from the name of the role because often the same actor
will participate in multiple roles within a process.

Step 2. Based on the information exchange requirements identified in step 1,
spend the time to model the data in each document that will be exchanged
within the processes defined in step 1. DON XML strongly recommends using
the Unified Modeling Language (UML) to conduct the modeling. Several
efforts are underway to create production rules by which UML models can be
used directly to generate XML documents. An excellent online resource is
xmlmodeling.com.

Step 3. Look for previously developed XML components that can be reused, either
in the DoD XML Registry or schema developed by commercial consortia
(Appendix D provides references).

Step 4. Create the ebXML/ISO 11179 compliant name and definition for each
element identified in step 2 that will be used in an information exchange
scenario.

Step 5. Identify extra metadata required to understand the business value of each
element. This extra metadata may be expressed in either the schema or the
instance as attributes (section 7.4 Attributes versus Elements provides
detailed guidance).

Step 6. Analyze the information element. Ensure you have identified specific
physical elements for each data item that will appear in the XML instance.
This process will help the team identify underlying logical elements or generic

B - 1

mailto:bhopkins@logicon.com?subject=Summary Developer's Guidance Feedback: Schema development procedure
http://www.xmlmodeling.com/

DON XML WG
Appendix B XML Developer's Guide V1.1 – 1 May 2002

physical elements that can be reused by declaring them as XML Schema
data types or as abstract elements. This analysis should supplement the
model you defined in step 2, and may require that you iterate through step 2
again. The UML static structure artifact is extremely useful here. Last,
determine relationships between elements defined here and existing data
models and definitions (such as the ebXML core components, the DDDS, the
DoD XML Registry and Data Emporium).

Step 7. Identify any common business terms that are associated with the
information elements defined in step 2. If any are identified, one or more of
these will be used as the actual XML element names.

Step 8. Create the schema 6.
a. If creating schema as a DTDs, your choices are to make the model

elements just defined an XML element or an attribute
b. If employing the XML Schema language, you have some extra choices in

deciding how to express a model element. Model elements can be
expressed:

• As types, which may be declared abstract.

• As abstract XML elements.

• As (non-abstract) XML elements or attributes.
One strategy for creating XML Schemas is as follows:

• Create an underlying set of simple and complex XML
Schema data types describing base data types, reusable
logical and generic physical elements.

• Declare every model element that will appear in the XML
instance as type that derives from the types declared
previously.

• Create XML Schema data types and attributes using the
same name as the ISO 11179 named model elements

• Create XML elements names according to business terms,
actor and role names. For instance <TransmitterUnit> is a
tag name consisting of a role name and an actor name.
<AcousticFrequency> is a business term for ‘Acoustic
Signal. Frequency. Measure’. When no business term, or
actor/role exists, consider creating element names that

6 Up until now, we have not considered how we will express the information in XML.
It is a good XML engineering practice to go through the process of defining and
modeling information before the additional complications and design alternatives of
XML are addressed. Trying to do both information modeling and XML design at the
same time is confusing, and often, critical aspects of one or the other are missed.

B - 2

http://diides.ncr.disa.mil/shade/index.cfm

DON XML WG
Appendix B XML Developer's Guide V1.1 – 1 May 2002

consist of an optional context term plus the ISO 11179
Object Class (plus property term if appropriate) plus
representation term. For example
<DoDMaterialItemIdentifier>, where the context term is
“DoD” indicating that the element is specific to the
Department of Defense.

• For business terms with commonly used synonyms, such as
NSN for National Stock Number, create a substitution group
for the additional synonyms.

c. Build the schema from the bottom-up and top-down.
Step 9. Register any newly created XML elements with the DoD XML Registry.

B - 3

DON XML WG
Appendix C XML Developer's Guide V1.1 1 May 2002

Appendix C - Tools and References
Tools

Tools for developing and employing XML in applications are flooding the market.
However, most if not all of these tools are in early stages of development. In future
revisions to this publication, recommendations will be provided as to tools that have
either been used, evaluated or are known by reputation. Pros and cons of each will
be presented in the case where they are known. Application developers that have
used a particular tool may request that it be included in this list, provided it meets at
least two of the following criteria:

• It is relatively mature or produced by an established vendor (such as IBM or
Microsoft). A beta tool from Microsoft, or from IBM Alphaworks may be included;
however, a beta tool from CrazyXMLTools.com should not.

• It is a leader in a developing area, such as X2X’s XLink processor. While still
immature, it is currently one of the leaders in XLink processing software.

• It has been used by a Navy activity and found to be useful and relatively free of
bugs, or the bugs are well documented.

• It has been evaluated by a neutral third party (such as Forrester or the Gartner
Group, or an established periodical) with favorable results.

Submit proposed tools to the editor using the format of the following table:

Name & Link Description Pros Cons

XML, XSL and Schema Development

XML Parsers and XSL Processors

Databases

“Servers”

Miscellaneous

A more complete list of available XML software is maintained at
www.xmlsoftware.com.

C - 1

mailto:bhopkins@logicon.com?subject=Proposed Addition to XML Tools List
http://www.xmlsoftware.com/

DON XML WG
Appendix C XML Developer's Guide V1.1 1 May 2002

Publications
The following publications have been reviewed by the editor and found to be good
reference material. The table presents several levels of readers and recommends
appropriate reading for each.

C - 2

DON XML WG
Appendix C XML Developer's Guide V1.1 1 May 2002

Audience Title ISBN Author(s) Date

Management
/Business

XML: A Manger's
Guide

0-201-
43335-4

Dick 2000

 ebXML: The New
Global Standard for
Doing Business on the
Internet

0-735-
71117-8

Kotok &
Weber

2001

Business /
Technical

XML in a Nutshell : A
Desktop Quick
Reference (Nutshell
Handbook)

0-596-
00058-8

Harold &
Means

2001

 Metadata Solutions:
Using Metamodels,
Repositories, XML,
and Enterprise Portals
to Generate
Information on
Demand

0-201-
71976-2

Tannenbaum 2001

 Modeling XML
Applications with
UML: Practical e-
Business Applications

0-201-
70915-5

Carlson 2001

Technical The Wrox
Professional XML
Series

 Wrox

 Building B2B
Applications with XML:
A Resource Guide

0-471-
40401-2

Fitzgerald 2001

 Java & XML, 2nd
Edition: Solutions to
Real-World Problems

0-596-
00197-5

McLaughlin 2001

 SOAP: Cross Platform
Internet Development
Using XML

0-130-
90763-4

Seely &
Sharkey

2001

 Inside XSLT 0-735-
71136-4

Holzner 2001

 XML Schema
Development: An
Object-Oriented

0-672-
32059-2

Brauer 2001

C - 3

http://www.wrox.com/Books/books.asp?sub_section=1&subject_id=30&subject=XML
http://www.wrox.com/Books/books.asp?sub_section=1&subject_id=30&subject=XML
http://www.wrox.com/

DON XML WG
Appendix C XML Developer's Guide V1.1 1 May 2002

Approach

Internet

BizTalk http://www.biztalk.org/home/default.asp
DoD XML Registry: http://diides.ncr.disa.mil/xmlreg/user/index.cfm
ebXML http://www.ebxml.org
eBTWG http://www.ebtwg.org/
OASIS http://www.oasis-open.org/
Open Applications Group http://www.openapplications.org/
The Object Management Group www.omg.org
RosettaNet http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial

Schema.net http://www.schema.net
W3C http://www.w3.org
XML.com http://www.xml.com/
The XML Cover Pages http://www.oasis-open.org/cover/sgml-xml.html
XML Software.com http://www.xmlsoftware.com/

C - 4

http://www.biztalk.org/home/default.asp
http://diides.ncr.disa.mil/xmlreg/user/index.cfm
http://www.ebxml.org/
http://www.ebtwg.org/
http://www.oasis-open.org/
http://www.openapplications.org/
http://www.omg.org/
http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial
http://www.schema.net/
http://www.w3.org/
http://www.xml.com/
http://www.oasis-open.org/cover/sgml-xml.html
http://www.xmlsoftware.com/

DON XML WG
Appendix D XML Developer's Guide V1.1 – 1 May 2002

Appendix D – W3C XML Recommendations
Appendix deleted. A current list may be found at the W3C Technical Reportsxxii
page.

F - 1

http://www.w3.org/TR/

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

Appendix E – Combined XML Schema Example
The following XML Schema is a combined example illustrating some of the guidance
and concepts discussed in this document. The example is non-normative, and does
not represent the consensus of the DON XML WG. It is provided for information
only.
In this example, a tag from the DoD XML Registry, <ACOUST_SIGNA_FREQ> is
reused, but the principles of ISO 11179 and camel case are applied using the
functionality of the XML Schema language to maintain interoperability.
The DoD XML Registry defines a tag <ACOUST_SIGNA_FREQ> in the Tracks &
Reports Namespace. An instance might look like this:

<ACOUST_SIGNA_FREQ>12.100</ACOUST_SIGNA_FREQ>

Definition: ACOUSTIC SIGNATURE FREQ. THE FREQUENCY OF AN
EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH HERTZ.

Maximum Length: 10

You can view this tag definition at
http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358.
A possible XML Schema for this element:

<?xml version="1.0" encoding="UTF-8" ?>
- <!--

 edited with XML Spy v4.1 U
(http://www.xmlspy.com) by Brian
Hopkins(Logicon/CISD)

 -->

- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

- <xs:complexType name="MeasureType">

- <xs:annotation>

- <xs:documentation
source="http://www.ebxml.org/specs/ccDICT.pdf
">

- <ebXML>

F - 1

http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

 <CoreComponent UID="core000152">Text.
Type</CoreComponent>

 </ebXML>

 </xs:documentation>

 </xs:annotation>

- <xs:simpleContent>

- <xs:extension base="xs:decimal">

 <xs:attribute name="measureUnitCode"
type="xs:string" use="optional" default="HZ" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

- <!--

 ISO 11179-derived type name

 -->

- <xs:complexType name="AcousticSignalFrequencyMeasure">

- <xs:annotation>

- <xs:documentation
source="http://www.spawar.navy.mil/VPO/

dataDictionary.doc#ID1234">

- <!--

 example source attribute points to notional
data dictionary where the ISO name is
definied. If the dictionary is readily URL
accessible, then the <ISO11179Name> element
below is redundant and may be ommitted. Shown
here for example.

 -->

- <ISO11179Name>

 <ObjectClass>Acoustic Signal</ObjectClass>

 <PropertyTerm>Frequency</PropertyTerm>

F - 2

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

<RepresentationTerm>Measure</Representati
onTerm>

 </ISO11179Name>

 </xs:documentation>

- <xs:documentation
source="http://diides.ncr.disa.mil/xmlreg/user/d
etail.cfm?ir_id=8358">

- <!--

 example source attribute points to DoD XML
Registry Namespace where element is derived
from

 -->

- <DoDXMLRegistry>

 <Namespace prefix="TAR">Tracks and
Reports</Namespace>

<TagName>ACOUST_SIGNA_FREQ</TagNam
e>

 <Definition>acoustic SIGNATURE FREQ. THE
FREQUENCY OF AN EMITTED ACOUSTIC
SIGNAL TO THE NEAREST ONE
THOUSANDTH HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

 </DoDXMLRegistry>

 </xs:documentation>

 </xs:annotation>

- <xs:simpleContent>

- <xs:restriction base="MeasureType">

 <xs:totalDigits value="10" />

 <xs:fractionDigits value="3" />

 <xs:pattern value="\d*.\d{3}" />

F - 3

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

 <xs:attribute name="measureUnitCode"
fixed="HZ" />

 </xs:restriction>

 </xs:simpleContent>

- <!--

 Annotations provide logical pedigree of element: Its
ISO 11179 name and it mapping to an existing
component already registered with DoD XML Registry

 -->

 </xs:complexType>

- <!--

 Element named after business term, "Acoustic Frequency"

 -->

- <xs:element name="AcousticFrequency"
type="AcousticSignalFrequencyMeasure">

- <xs:annotation>

 <xs:documentation>Business
Term</xs:documentation>

 </xs:annotation>

 </xs:element>

- <!--

 DoD element name made synonymous with camel case
business term through use of substitution group

 -->

- <xs:element name="ACOUST_SIGNA_FREQ"
type="AcousticSignalFrequencyMeasure"
substitutionGroup="AcousticFrequency">

- <xs:annotation>

 <xs:documentation>DoD Registered
name</xs:documentation>

 </xs:annotation>

F - 4

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

 </xs:element>

 </xs:schema>

Schema Guide for AccousticSignalFrequencyMeasure Schema Type and
Associated Elements

The Schema defines 5 XML Components: 2 types, 2 elements and 1 attribute.

Elements

Complex types

ACOUST_SIGNA_F
REQ

AcousticSignalFrequencyMeasure

AcousticFrequency MeasureType

The DoD Registered element name is defined as:

element ACOUST_SIGNA_FREQ
diagram

type AcousticSignalFrequencyMeasure

facets totalDigit
s

10

fractionDi
gits

3

pattern \d*.\d{3}

attribute
s

Name Type Use Default Fixed

measureUnitCo
de

 HZ

annotati

on
documenta

tion
DoD Registered
name

F - 5

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

source <xs:element name="ACOUST_SIGNA_FREQ" type="AcousticSignalFrequencyMeasure"
substitutionGroup="AcousticFrequency">

 <xs:annotation>

 <xs:documentation>DoD Registered name</xs:documentation>

 </xs:annotation>

</xs:element>

Points to note:

• It is derived from a type ‘AcousticsSignalFrequencyMeasure’

• It has several facets that restrict its domain

• It has one attribute, ‘measureUnitCode’ that is fixed with a value of HZ.

• It is declared to be in the substitution group of the element ‘AcousticFrequency’.

element AcousticFrequency is a business term (notionally agreed to by all
stakeholders within a COI).

diagram

type AcousticSignalFrequencyMeasure

facets totalDigit
s

10

fractionDi
gits

3

pattern \d*.\
d{3}

attribute

s
Name Type Use Default Fixed

measureUnitCo
de

 HZ

annotati

on
documenta

tion
Business
Term

source <xs:element name="AcousticFrequency" type="AcousticSignalFrequencyMeasure">

F - 6

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

 <xs:annotation>

 <xs:documentation>Business Term</xs:documentation>

 </xs:annotation>

</xs:element>

Points to note:

• The Business Term has a synonym, ‘ACOUST_SIGNA_FREQ’, defined above
and declared to be in the substitution group.

• It has the same attributes and facets as ‘ACOUST_SIGNA_FREQ’ because it
derives from the same type.

complexType AcousticSignalFrequencyMeasure is the common Schema type from

which both elements are derived.

diagram

type restriction of MeasureType

used by elem
ents

ACOUST_SIGNA_FREQ
AcousticFrequency

facets totalDigit

s
10

fractionDi
gits

3

pattern \d*.\
d{3}

attribute

s
Name Type Use Default Fixed

measureUnitCo
de

xs:string optional HZ

F - 7

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

annotati

on
documentation
documentation

<!-- example source attribute points to notional data dictionary where the ISO
name is definied. If the dictionary is readily URL accessible, then the
<ISO11179Name> element below is redundant and may be ommitted. Shown
here for example.-->

<ISO11179Name>

 <ObjectClass>Acoustic Signal</ObjectClass>

 <PropertyTerm>Frequency</PropertyTerm>

 <RepresentationTerm>Measure</RepresentationTerm>

</ISO11179Name><!-- example source attribute points to DoD XML Registry
Namespace where element is derived from -->

<DoDXMLRegistry>

 <Namespace prefix="TAR">Tracks and Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN
EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH
HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

</DoDXMLRegistry>

source <xs:complexType name="AcousticSignalFrequencyMeasure">

 <xs:annotation>

 <xs:documentation source="http://www.spawar.navy.mil/VPO/dataDictionary.doc#ID1234 ">

 <!-- example source attribute points to notional data dictionary where the ISO name is definied. If the
dictionary is readily URL accessible, then the <ISO11179Name> element below is redundant and may be
ommitted. Shown here for example.-->

 <ISO11179Name>

 <ObjectClass>Acoustic Signal</ObjectClass>

 <PropertyTerm>Frequency</PropertyTerm>

 <RepresentationTerm>Measure</RepresentationTerm>

 </ISO11179Name>

 </xs:documentation>

 <xs:documentation source="http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358">

 <!-- example source attribute points to DoD XML Registry Namespace where element is derived from -->

 <DoDXMLRegistry>

 <Namespace prefix="TAR">Tracks and Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN EMITTED ACOUSTIC SIGNAL TO
THE NEAREST ONE THOUSANDTH HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

 </DoDXMLRegistry>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:restriction base="MeasureType">

F - 8

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

 <xs:totalDigits value="10"/>

 <xs:fractionDigits value="3"/>

 <xs:pattern value="\d*.\d{3}"/>

 <xs:attribute name="measureUnitCode" fixed="HZ"/>

 </xs:restriction>

 </xs:simpleContent>

 <!-- Annotations provide logical pedigree of element: Its ISO 11179 name and it mapping to an existing
component already registered with DoD XML Registry -->

</xs:complexType>

Points to note:

• The Type annotation provides
o ISO 11179 name parts. The source of this documentation is provided as a

notional data dictionary referenced by URL and ID.
o DoD Registry Metadata including the definition

• The domain restrictions are placed in the type vice at the element level.

• The attribute, ‘measureUnitCode’ has an optional value of HZ. It is set to fixed in
the element declaration.

• The type is derived from an ebXML “core component”

complexType MeasureType is a complex type derived from an ebXML core
component.

diagram

type extension of xs:decimal

used by complexT
ype

AcousticSignalFrequencyMeasure

attribute

s
Name Type Use Default Fixed

measureUnitCo
de

xs:string optional HZ

annotati

on
documenta

tion
<ebXML>

F - 9

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

F - 10

 <CoreComponent UID="core000152">Text. Type</CoreComponent>

</ebXML>

source <xs:complexType name="MeasureType">

 <xs:annotation>

 <xs:documentation source="http://www.ebxml.org/specs/ccDICT.pdf">

 <ebXML>

 <CoreComponent UID="core000152">Text. Type</CoreComponent>

 </ebXML>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="xs:decimal">

 <xs:attribute name="measureUnitCode" type="xs:string" use="optional" default="HZ"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Points to note:

• The measureUnitCode attribute common to all other types and elements is
defined only once, here.

• The type extends from the simpleType of decimal, again, defined only once here

• The annotations provide mapping to the initial ebXML core component UID.

XML Schema documentation generated with XML Spy Schema Editor
www.xmlspy.com

Some examples of XML instance fragments this document will validate:

<ACOUST_SIGNA_FREQ>100.000</ACOUST_SIGNA_FREQ>

or

<ACOUST_SIGNA_FREQ
measureUnitCode="HZ">100.000</ACOUST_SIGNA_FREQ>

or

<AcousticFrequency measureUnitCode="HZ">100 000</

http://www.xmlspy.com/
http://www.xmlspy.com/

DON XML WG
Appendix E XML Developer's Guide V1.1 – 1 May 2002

AcousticFrequency >

F - 11

DON XML WG
Appendix F XML Developer's Guide V1.1 – 1 May 2002

Appendix F – Sample XML Document Headers

Sample Schema Header

<?xml version=”1.0” encoding=”UTF-8”>
<!— Schema/DTD Header ****************************
Schema Name: SPAWARVPO$2-1_FolderData$1-1.xsd
DoD Namespace(s): TBD
Navy Functional Data Area: Administration
Current version available at (URL): https://www.spawar.navy.mil/vpo/schemas/
SPAWARVPO$2-1_FolderData$1-1.xsd
Other Schemas Imported (XML Schema only):
**** Namespace Prefix: PER
“http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm”
**** Schema File Name: BUPERSBUPERSOnLine$3-0_Document$2-2.xsd
**** Available at URL: www.bupers.navy.mil/bupersOnLine/schemas/
Other Schemas Included (XML Schema only): None
External DTDs Referenced (DTD only): n/a
**** Name: n/a
**** Available at (URL): n/a
Description: Provides information regarding the content of VPO folders such as
content file names, file sizes, file owner, file status, and file access information.
Application: Virtual Program Office
Application Version: 2.1
Application Interface:
XML data is available from the VPO application via HTTP at
https://www.spawar.navy.mil/vpo/GetFolderInfo.asp. Input queries via HTTP GET
with query string format, “...?dir=directoryName”. A complete interface description
document is available at
https://www.spawar.navy.mil/vpo/interfaces/GetFolderInfo.txt
Associated Stylesheet:
**** Name: SPAWARVPO$2-1_ViewFolderContents$1-0.xsl

**** Available at (URL): https://www.spawar.navy.mil/vpo/stylesheets/
Developed by (Gov’t Activity): SPAWAR 08

F - 1

DON XML WG
Appendix F XML Developer's Guide V1.1 – 1 May 2002

Point of Contact Name: Joe Smith
Point of Contact Email: jsmith@spawar.navy.mil
Change History:
CHANGE # Version DATE DESCRIPTION OF CHANGE
 0 1.0 15 Sep 2001 Initial release
 1 1.1 30 Sep 2001 Updated to include file size information
**
-->

This is a generic header that is provided in text-only, non-XML format. It can be used
for either a DTD or XML Schema. A possibly more useful approach would be to
markup header information using XML. The tags could be encapsulated by XML
comment markup (<!-- ... --> or in the case of XML Schemas, included as an
annotation following the XML Schema declaration. Marking up header information
could be very useful; for instance, a large number of schemas could be analyzed
automatically to determine which DoD Namespaces and Functional Data areas they
fell into. This would be a time consuming manual process otherwise. The DON XML
WG may work to standardize the tags and procedures for providing header
information in XML markup. Until then, it is important to get the information
somewhere in the document. Activities wishing to experiment with different
strategies and techniques for providing header data are encouraged to do so and
report there findings to the DON XML WG. Consider the above example the
minimum information we think will be required; your input is encouraged.

Notes on header fields:

Header Item Description
Schema Name: The standard name of the schema file. See Document Naming

Convention

Tested With: List the name and version number of the XML processor(s) that have
been are tested known to corectly validate this schema.

DoD Namespace(s): Identify the DoD Namespace that the elements from this schema are
registered in by specifying the DoD XML Namespace Prefix from the
DoD XML Registry. You can specify muliple Namespaces for XML
Schemas that use tags from mulitple DoD Namespaces. This is only
possible through the use of XML Schemas because DTD’s do not
support XML Namespace prefixing.

Functional Data Area: Indicate which Navy Functional Data Area the application that uses this
schema belongs to. Refer to the DMI Instruction (SECNAVINST
5000.36) and implementation guidance for a list.

Current version available at
(URL):

If this schema is URL accessable, put the address here. It is highly
recommended that all schemas be available on-line to assist other
activities desiring interoperabiity

F - 2

DON XML WG
Appendix F XML Developer's Guide V1.1 – 1 May 2002

activities desiring interoperabiity.

Other Schemas Imported
(XML Schema only):

The next three fields are
repeatable

The XML Schema language allows the reuse of existing XML Schema
so that schemas can be modularized. The first way of doing this is via
the XML Schema Import syntax.

**** Namespace Prefix and
URL:

The XML Schema Import syntax is used when desiring to reuse a
schema whose elements belong to a different XML Namespace than the
elements into which the import is being conducted on. Specify here

**** Schema File Name: The standard name of the imported schema file. See Document Naming
Convention

*** Available at (URL): If this schema is URL accessible, put the address here. It is highly
recommended that all schemas be available on-line to assist other
activities desiring interoperability.

Other Schemas Included (XML
Schema only):

The next two fields are repeatable

The second way XML Schemas allow reuse of other schemas is through
the XML Schema Include syntax. Includes can be used when the
elements in the included schema belong to the same XML Namespace
as the schema into which the include is occuring. A schema may both
include and import.

**** Schema File Name: The standard name of the imported schema file; see Document Naming
Convention

*** Available at (URL):

If the schema file to be imported is URL accessible, put its address
here. It is highly recommended that all schemas be available on-line to
assist other activities desiring interoperability.

External DTDs Referenced
(DTD only):

The next two fields are repeatable

Information regarding any External Parameter Entity references are
made to an external DTD. This approximates the modular design
capability available in XML Schema.

**** Name: The standard name of the DTD file; see Document Naming Convention

**** Available at(URL): If this schema DTD is URL accessible, put its address here. It is highly
recommended that all schema DTDs be available on-line to assist other
activities desiring interoperability.

Description: Plain text description of the type of information described by the
schema.

Application: The name of the application which produces XML documents that
validate to this schema.

Application Version: The version (major.minor) of the application that produces this schema.

Application Interface: A plain text descriptive summary of how other applications interface with
this application. For example, via HTTP, using query parameters passed
via HTTP POST or GET. Examples of query name/value pairs may be
provided. If SOAP is used, should provide a brief description of the
method calls and parameters. A good XML engineering practice is to
completely document your application interface; if you have done so,
reference that documentation here. Making the interface specification
available via a (secure) URL will assist other developers in
interoperating.

Associated Stylesheet: If a stylesheet is available to render instances that validate to this
schema, provide information here.

**** Name: The standard name of the stylesheet file; see Document Naming
Convention

**** Available at (URL) If the stylesheet is URL accessible, put the its address here. It is highly
recommended that all stylesheets be available on-line to assist other

F - 3

DON XML WG
Appendix F XML Developer's Guide V1.1 – 1 May 2002

activities desiring interoperability.

Developed by (Gov’t Activity): Government Activity and Office code.

Point of Contact Name: Joe
Smith

Name of person to contact with questions regarding the schema.

Change History: The following fields provide an audit trail of changes.

CHANGE # Keep a sequentially numbered list of changes.

Version You should also assign Major and minor version numbers.

DATE Date implemented

DESCRIPTION OF CHANGE Plain text description.

F - 4

DON XML WG
Appendix F XML Developer's Guide V1.1 – 1 May 2002

Sample Stylesheet Header
This sample stylesheet header is the similar to the schema header with the addition
of information regarding which version of a schema the stylesheet is written from,
and the removal of non-applicable items.

<?xml version=”1.0”>
<!— Stylesheet Header ****************************
Stylesheet Name: SPAWARVPO$2-1_ViewFolderData$1-1.xsl
Tested to:
**** Schema Name: SPAWARVPO$2-1_FolderData$1-1.xsd
**** Schema Version: 1.1
**** XSL Processors: MSXML 3.0, XALAN 1.2.2
DoD Namespace: TBD
Navy Functional Data Area: Administration

Current version available at (URL): https://www.spawar.navy.mil/vpo/stylsheets/
Other Stylesheets Imported:
**** File Name: BUPERSBUPERSOnLine$3_Document$2-2.xsl
**** Available at URL: www.bupers.navy.mil/bupersOnLine/stylsheets/
Description: XSLT compliant stylesheet renders folder contents as an HTML table
Application: Virtual Program Office
Application Version: 2.1
Developed by (Gov’t Activity): SPAWAR 08
Point of Contact Name: Joe Smith
Point of Contact Email: jsmith@spawar.navy.mil
Change History:
CHANGE # Version DATE DESCRIPTION OF CHANGE
 0 1.0 15 Sep 2001 Initial release
 1 1.1 30 Sep 2001 Updated to include file size information
**
-->

The following notes indicate differences between the stylesheet and schema header
only.

F - 5

DON XML WG
Appendix F XML Developer's Guide V1.1 – 1 May 2002

Header Item Description
Stylesheet Name: The standard name of the schemastylesheet file. See Document

Naming Convention

Tested to: Information regarding the specific schema and software this stylesheet
has been tested with.

**** Schema Name: Name(s) of the schemas this stylesheet has been tested with.

**** Schema Version: Version(s) of the schemas this stylesheet has been tested with.

**** XSL Processors: Name(s) of the XSL processors this stylesheet has been tested with.

Other Stylesheets Imported

The next two fields are repeatable

Stylesheets, like schema, can be constructed modularly. Provide
information here regarding other stylesheets reused.

The standard name of the file. See Document Naming Convention

*** Available at (URL): If this Stylesheet is URL accessible, put its address here.

**** File Name:

Sample Instance header
It is important that XML documents include some basic information. Most of the
needed information can be gleaned from the header data provided by the schema
that describes the document and the stylesheet(s) that transform or render it. The
XML specifications provide syntax for pointing to schemas and stylesheets at the
beginning of an XML document. In cases where validation against a schema and/or
transformation with a stylesheet is not required, it is still desirable to provide
references to schemas and stylesheets if available. Consider this example:

<?xml version="1.0" encoding="UTF-8" ?>
<! --

Schema and Stylesheet Reference Data:

stylesheet type = xslt

 url =
http://spawar.navy.mil/stylesheets/SPAWARVPO$2-
1_ViewFolderData$1-1.xsl

 version = 1.1

schema type = XML Schema (W3C)

 url = http://spawar.navy.mil/schemas/SPAWARVPOV2-
1FolderDataV1-1.xsd

 version = 1.1

 -->

 <root />

F - 6

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002

Appendix G – Draft Glossary and Acronyms
The following draft glossary is provided in advance of the DON XML WG’s future
XML Glossary deliverable. It represents the understanding and opinion of the
editor, and does not reflect the consensus of the DON XML WG. These items are
provided for information only.

Some terms may have “(XML)” prepended. This convention indicates that the term has
meaning other than in the context of XML, and that the definition applies only to the XML
context.

Terms
Abstract – In the context of an XML Schema, an XML element or Schema type may
be declared abstract, meaning that it may not be used directly. An abstract element
may not be used directly in an instance, but must have in its substitution group a
non-abstract element. For instance, an abstract element, ‘Address’, defines the
contents of an address. A non-abstract ‘HomeAddress’ element that is substitutable
for ‘Address’ can be used as an XML element. The ‘HomeAddress’ structure reuses
the previously defined ‘Address’ contents, but the tag provides a specific context.
Schema types may also be declared abstract. Similar to abstract elements, abstract
types may not be directly used to reference elements, but must have a non-abstract
type that extends/restricts it. The non-abstract type can then be used to reference
XML elements. The concept of abstractness is taken from object-oriented
programming, where an abstract class may be defined, requiring subtyping prior to
instantiation.
Binding - A term frequently used in reference to XML applications taken from the
field of computer science. In the context of applications that have a public interface
that communicates in XML (such as the case with a web service), binding refers to
the information required and the process by which an external source connects to,
and interacts with it to get data in XML. Binding can also refer to the process and
application required to connect a software module (e.g. a Java class, or COM object)
to a public XML interface or the way in which the public XML is related to an
underlying data source (such as a relational database).
BPSS - The Business Process Specification Schema was developed as part of the
ebXML project as a schema for describing a business process in an XML instance. It
may be created from UML models of business processes developed according to
the UMM as described in the technical report, Business Process and Business
Information Analysis Overview v1.0xxiii. The BPSS is available in either DTD format
xxiv or XML Schema (Candidate Recommendation) formatxxv.
Business Term - The ebXML specifications refers to a business term as a
commonly used term referencing a commonly understood concept within a specific
domain. To enhance understanding, it is appropriate to use business terms as XML
Element names (when they exist), rather than the often esoteric ISO 11179 syntax.

G - 1

http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/ebBPSS.dtd
http://www.ebxml.org/specs/ebBPSS.xsd
http://www.ebxml.org/specs/index.htm

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
C4ISR – Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance
Camel Case – A convention in which names of elements and attributes are all lower
case with the exception of the beginning of a new word, which is in uppercase.
ebXML differentiates between upper camel case where the first letter of the name is
also capitalized and lower camel case where it is not. Example of an upper camel
case name: UpperCamelCase. A lower or just camel case name: lowerCamelCase.
Camel case is emerging as the industry norm for XML element naming. ebXML
specifies elements to be in upper and attributes to be in lower camel case, while
BizTalk, RosettaNet, and Oasis use straight camel case for both elements and
attributes.
CSS - Cascading Style Sheets. A set of W3C recommendations for styling HTML
and XML documents based on the application of formatting instructions in a linear,
cascading fashion. CSS is an alternative to styling XML with XSL, but CSS does not
have the transformational component of XSLT.
Class – A software component that provides instructions for the creation of an
object. Applications are said to create instances of a class (“objects”) through a
process referred to as instantiation. In the context of XML, a schema is a “class” that
describes XML instances (data “objects”).
COM Object – The Common Object Model is a Microsoft sponsored interface
specification for creating interoperable software components. Distributed COM or
DCOM is Microsoft’s COM interface standard for distributed computing, i.e., where
an “application” consists of software “objects” distributed across nodes of a network.
DCOM is similar to the Java based EJB specification, but works only for Microsoft
operating systems. DCOM objects can communicate via TCP/IP and their own
proprietary messaging framework (Windows Distributed iNternet Architecture or
DNA). Alternatively, COM objects can communicate with other non-COM / non-
Windows objects such as Java Classes or EJB’s via XML and SOAP.
CORBA – Common Object Request Broker Architecture. CORBA is a framework
created by the Object Management Groupxxix (OMG) to facilitate platform / operating
system / programming language neutral distributed computing. Software
components or “objects” interact in client-server relationships, with an Object
Request Broker (ORB) software component acting as intermediary. Via the IIOP,
CORBA-based distributed applications can operate across the Internet. CORBA is
language independent.
Core Components – One goal of the ebXML effort is to define a set of universal,
core components that are contextually neutral and can be used across all domains
to express semantics of common business concepts. Core components may be
information entities, defined in the ebXML Core Component Dictionary technical
reports, or process components discussed in the ebXML Business Process technical
reports. Note that the core component technical reports do not address how an
information component will be expressed in XML – this was an intentional omission
on the part of ebXML. It was felt that prior to defining rules for creation of XML, a
necessary first step was to create a schema neutral standard for defining

G - 2

http://www.ebxml.org/
http://www.biztalk.org/
http://www.rosettanet.org/
http://www.oasis-open.org/
http://www.w3.org/Style/CSS/
http://www.omg.org/
http://www.ebxml.org/project_teams/core_components/core_components.htm
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
components in business terminology. The work of defining how core components
map to XML will be undertaken by the Core Component Project Teamxxx of the
UN/CEFACT sponsored Electronic Business Transition Working Group (eBTWG).
DDDS – The Defense Data Dictionary Systemxxxi defines standard data elements per
the DoD 8320 series of documentsxxxii. The DDDS provides definitions of Standard
Data Elements (SDEs) from core data models across all DoD data domains. The
DDDS elements are mainly logical in nature, and may be used to express logical,
semantic relationships between XML elements. XML Schema data types may be
used to express relationships to DDDS standard data elements.
Data-centric – Describes the exchange of information between applications where
the data being exchanged is sufficiently well defined and granular for transactional
processing. In the context of XML, a data-centric markup strategy provides sufficient
metadata for non-ambiguous application processing of received data .
Example:
<PartDescription>
 <PartSize measureUnitCode=”inch”>1</PartSize>
 <PartType threadDirectionCode=”left”>Wing Nut</PartType>
 <PartNumber>123456</PartNumber>
</ PartDescription >
Compare to the document-centric example containing the same information.
Document-centric – Describes the exchange of information, where the data being
exchanged is meant to be read and understood by a human. In the context of XML,
describes the use of markup to describe information of a non-transactional nature
consisting of string data. The string must be read and understood by a human in
order to be useful.
Example: <PartDescription>123456, 1” left threaded wingnut</PartDescription>.
Compare to the data-centric example containing the same information.
Document Type Declaration – A declaration at the beginning of an XML document
indicating a DTD to which the instance must conform.
DoD XML Registry – The DoD XML Registryxxxiii “...provides a baseline set of XML
components developed through coordination and approval among the DoD
community. The Registry allows you to browse, search, and retrieve data that satisfy
your requirements.” DON XML Policy requires that all activities developing XML in
the DON register components developed with the appropriate DoD XML
Namespace.
DoD Namespace – The DoD XML Registry is divided into “Namespaces”. ”A
Namespace is a collection of people, agencies, activities, and system builders who
share an interest in a particular problem domain or practical application. This implies
a common worldview as well as common abstractions, common data
representations, and common metadata. The COE Data Emporium, including the

G - 3

http://www.ebtwg.org/projects/core.html
http://www.ebtwg.org/
http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
http://www-datadmn.itsi.disa.mil/guidance.html
http://diides.ncr.disa.mil/xmlreg/user/index.cfm

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
XML Registry, allows Namespaces to publish their existence and their available
information resources so that outsiders may discover them and assess whether or
not they want to share.” A DoD XML Namespace is an extension of the XML
Namespace concept. The terms “XML Namespace” and “DoD XML Namespace” are
not synonymous.
DoD Namespace Manager – Each DoD XML Namespace has a central activity
responsible for it. The individual responsible for coordinating and administering the
Namespace is the Namespace manager. Point of contact information for the
Namespace Managers is available by clicking on the Namespace hyperlinksxxxiv on
the registries web site.
DoD XML Namespace Prefix – Each DoD XML Namespace has been assigned a
three-letter prefix that may be used as XML Namespace qualifiers in XML instances
and Schemas.
DoD XML Registration Package – Activities developing XML within the DON are
required to submit a specially formatted package of information to the DoD Registry
containing metadata about the components registered. Information about how and
what to register can be found herexxxv.

DOM - The Document Object Model. The set of W3C DOM recommendationsxxxvi
form application interface descriptions (APIs) for expressing the contents of XML or
HTML “documents” as hierarchical tree-like models of information with data forming
the “leaves” of the tree. XML Processors that implement the DOM interface parse an
entire XML document, creating a data tree in memory. Applications that call a DOM
parser access data from the XML object tree through a set of programmatic
instructions defined by the specifications. The instructions allow applications to “walk
the document tree”, searching for elements and attributes that meet query criteria
(XPath expressions). Results are returned to the calling application and assigned to
application variables for further processing.
DTD - Document Type Definition. A schema syntax that is part of the XML 1.0
specification and derived from SGML.
EJB – Enterprise Java Beans. EJB is an interface specification which a Java class
may implement. Software objects that implement the EJB interface may interoperate
in an enterprise (distributed) environment, even across the Internet via TCP/IP and
the CORBA IIOP. In this fashion, an “application” may consist of a number of
independent software components (“objects”) that are physically separated at
different nodes of a network, but functioning together as a single application similar
to the Microsoft (D)COM specification.
Entity – In the context of a DTD, an entity is a declarative construct referencing text,
or a binary file. Entities are defined in the DTD, and referenced elsewhere in the
DTD (parameter entity) or in the body of the XML (general entity). A validating parser
encountering a reference to a previously defined entity during the validation process
will insert the entity’s value in place of the entity reference. Internal entities are
declared in the DTD and may be general or parameter. External entities point to an

G - 4

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm
http://www.w3.org/DOM/

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
external file containing the entity declaration via URI reference; they also may be
internal or external. A parsed entity is some form of encoded text and is therefore
processed by a parser. An unparsed entity is a reference to a binary file that will not
be parsed. Unparsed entities are always external. Through entities, DTDs may
declare a common construct once, and reuse it many times throughout the DTD or in
the instance. A common use for parameter entities is to declare a common set of
attributes in the DTD. Assigning the attributes to an element only requires a
reference to the parameter entity, vice retyping the entire attribute list many times. A
second use of external unparsed general entities is to make reference to a binary file
(such as an image or sound file) within an XML instance.
EDI – Electronic Data Interchange. A term referring to the conduct of eBusiness
through the exchange of electronic messages. Two message standards exist as
rigorously defined sets and segments, one maintained by the U.S. led ANSI X12
body, and the second led by UN/EDIFACT.
Fatal Error - [From the XML 1.0 specification] "An error which a conforming XML
parser must detect and report to the application. After encountering a fatal error, the
parser may continue processing the data to search for further errors and may report
such errors to the application. In order to support correction of errors, the processor
may make unprocessed data from the document (with intermingled character data
and markup) available to the application. Once a fatal error is detected, however, the
processor must not continue normal processing (i.e., it must not continue to pass
character data and information about the document's logical structure to the
application in the normal way)." In other words, upon detecting a fatal error (such as
a well-formedness violation), the parser is unable to provide information from the
XML document to the calling application such that the application may continue
functioning normally.
Functional Area – DMI (SECNAVINST 5000.36) divides DON data administration
responsibilities by into functional areas of responsibility. The concept of a functional
area is derived from DoD 8320.1.
HTML - Hypertext Markup Languagexxxvii
Interface – The process by which a software application interacts with other
software or users. In object-oriented programming an (software) “object’s” interface
is often described separately from the internal logic in a process know as
“encapsulation”. Essentially the interface encapsulates and hides the internal logic.
This allows flexibility to change and improve object code without affecting other
objects. An interface description is made public so other objects/applications know
how to interact. Software is said to “implement” an interface if it conforms to the
behavior as defined in an interface description. The Object Management Group
(OMG) has defined a formal syntax (language) for defining interfaces in a
programming language neutral fashion. This is called the OMG Interface Description
Languagexxxviii (OMG IDL). This IDL is used to define interface specifications such as
the DOM API and CORBA. For developers implementing public XML interfaces, it is
a good idea to document exactly how other applications connect, query, and receive
(i.e. bind to) your application; while it is not necessary to go to the trouble of writing a

G - 5

http://www.w3.org/MarkUp/
http://www.omg.org/
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.omg.org/gettingstarted/omg_idl.htm

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
formal IDL interface description, some kind of formal document will greatly aid other
applications desiring to share data.
IIOP – Internet Inter-ORB Protocol. A TCP/IP based protocol that facilitates
communication between CORBA ORBs. Via IIOP, CORBA client objects at one
location on the Internet can communicate with CORBA server objects at another
node and vice versa.
ISO 11179 - Information Technology - Specification and Standardization of Data
Elements is a 6-part ISO standard providing a framework and methodologies for
developing, documenting, and registering standard data elements. Of interest to
XML developers is Part 5: Naming And Identification Principles For Data Elements
upon which the ebXML naming convention is based. The specifications are available
from the ISO Storexxxix under section 35.040 - Character Sets And Information
Coding for a small fee.
Markup - Special characters used by Markup Languages (SGML, XML, HTML) to
differentiate data from metadata. SGML allows document authors the flexibility of
specifying which characters are used for markup, whereas in XML the markup
characters are fixed. Markup characters may not be used in data text (unless special
precautions are taken). In the tags definition example, the markup characters are '<'
(greater than), '>' (less than), and '/' (forward slash). The XML specificationxl defines
start tag markup as opening with a '<' and ending with a '>'. It specifies end tag
markup as opening with a '</' and endings with a '>'.
Metadata - Data about data. For example, for the data '3000N', the metadata might
be 'latitude'. Markup languages such as SGML and XML encapsulate data with tags
that contain text describing the metadata. See the example provided in the tags
definition.
Normative – A term frequently used in software specifications to identify
requirements. An implementation that conforms to the specification must satisfy all
the normative requirements. Non-normative text is provided for information only. A
common example of non-normative text is “rationale.”
Object – A term used frequently in relation to XML and object-oriented
programming. Strictly speaking, an object is a run-time software construct that
resides in the host computer’s memory space. Objects are created by applications
from code that defines the object’s behavior; this code is called a class. In object-
oriented programs, objects interact with other objects to create the behavior of the
application. An object’s behavior is described by an Interface consisting of methods
and properties. A method can be thought of as a behavior of the object that can be
triggered by calling it and optionally passing parameters. For instance, the object
‘myAccount’ might have the method ‘getBalance(accountNumber)’. Object
oriented languages use the ‘dot’ notation to refer to objects and methods. From the
previous example, ‘currentBalance == myAccount.getBalance(accountNumber)’
is a code snippet that assigns to the ‘currentBalance’ variable the balance returned
from the ‘myAccount’ object when the ‘getBalance()’ method is called by passing in
the ‘accountNumber’ variable. Object properties are similar to methods, but instead
of calling a behavior, a property call to an object returns a previously set value of the

G - 6

http://www.iso.ch/iso/en/prods-services/ISOstore/store.html
http://www.w3.org/TR/2000/REC-xml-20001006

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
property. Returning to the example, ‘myName == myAccount.accountOwner’ sets
the ‘myName’ variable equal to the ‘accountOwner’ property of the ‘myAccount’
object, conversely ‘myAccount.accountOwner == myName’ sets the
‘accountOwner’ property of the ‘myAccount’ object to the value of the ‘myName’
variable. XML that has been parsed by an XML processor implementing the DOM
API is transformed into a set of objects that may be used by the calling application to
extract data from the XML. Also, an application may construct a DOM tree of objects
in memory then transmit the data to another application or object as a textually
encoded string of XML. The receiving object then accesses the data via the DOM or
SAX APIs. Since the XML format is neutral, a COM object created by a Windows
application may interact with an EJB object running on a Unix platform via XML for
true cross-platform, language-independent distributed computing.
Payload (XML) – Protocols and frameworks such as SOAP, BizTalk, and ebXML
use XML to mark up message header information necessary for binding, reliable
messaging, and security. The term ‘payload’ refers to the XML being transmitted that
contains the actual business information communicated.
Public (XML) Interface – XML may be employed internally to an application or it
may be used to communicate information to another system outside the originating
application’s environment. The term ‘Public Interface’ refers to XML used by an
application or set of homogeneous applications to communicate with other
applications across system boundaries. DoD and DON policy for registration of XML
components applies to public interfaces; these policies are not intended to restrict
the use of XML internal to systems; in fact, it is recommended that applications
separate internal XML grammars processed by application code from that used for
external communications.
Qualified (elements and attributes) – The practice of prefixing an element or an
attribute with an XML Namespace qualifier in accordance with the Namespaces in
XMLxli W3C Recommendation. This allows two elements with the same name to be
distinguished by an XML processor.
Regular Expression – A language element for defining patterns in strings and
numbers. The XML Schema language allows elements and attributes to be
constrained by regular expressions to provide a precise description of the range of
possible values. For instance an element of type=’integer’ could be further
constrained to be only a 3 digit integer by the regular expression ‘/d{3}’.
Rendering (XML) - XML is not easily legible to readers in its native format and
should be transformed for presentation (i.e., rendered for presentation), either by a
CSS, XSLT (to well-formed HTML) for browser viewing, or by XSL-FO into a format
for viewing by another presentation application (e.g. into Adobe Acrobat .pdf, or MS
Word .doc files.) Note: It is a common assumption that all XML must be rendered (by
a stylesheet) to be useful and therefore all XML must have a stylesheet. This is a
mistake; XML data can be used by an application via an API and never get rendered
at all.
SAX - Simple API for XML. SAXxlii is an open-source interface for accessing
information from XML documents. SAX parsers process a document, triggering

G - 7

http://www.biztalk.org/
http://www.ebxml.org/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.megginson.com/SAX/

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
events in the calling application corresponding to the parser encountering opening
tags, closing tags and character data. Accessing XML data via SAX is very quick
and places fewer demands on system resources than DOM;, however, once
processed, a document must be re-parsed if the required information was not
retained initially. This can be conceptualized as “serial” access to the information.
Schema - Within the context of XML, a document describing a set of XML Instances.
Schemas may be expressed in a number of different languages. Most familiar is the
Document Type Definition (DTD) syntax described in the XML 1.0 specification.
Schemas provide the rules against which a validating parser validates an instance of
XML.
SGML - The Standard Generalized Markup Language [ISO 8879xliii]. SGML is the
parent of both HTML and XML.
SOAP - "SOAP is the Simple Object Access Protocol, a way to create widely
distributed, complex computing environments that run over the Internet using
existing Internet infrastructure. SOAP is about applications communicating directly
with each other over the Internet in a very rich way." [MS] “SOAP is a protocol
specification for invoking methods on servers, services, components, and objects.
SOAP codifies the existing practice of using XML and HTTP as a method invocation
mechanism. The SOAP specification mandates a small number of HTTP headers
that facilitate firewall/proxy filtering. The SOAP specification also mandates an XML
vocabulary that is used for representing method parameters, return values, and
exceptions." [DevelopMentor]. [Taken from the XML Cover Pagesxliv]. The current
SOAP 1.1 specificationxlv is a W3C Note; SOAP 1.2xlvi is going through the W3C
consensus processxlvii and was published as a first working draft in July 2001.
SQL - Structured Query Language - A language for querying, writing to, and
constructing relational databases. Many versions of SQL exist, meaning that an SQL
query that works for one database will not necessarily work against another.
SDE – Standard Data Element as defined by the DoD 8320 series and used in the
DDDS.
Stylesheet - A generic term that may refer to an XSL Stylesheet or a CSS. Often the
term used to reference XSL Stylesheets implicitly; however, this is not technically
correct as a stylesheet may by CSS conformant, and having nothing the do with
XML whatsoever. The primary function of a stylesheet is to render XML to a
presentation format. However, XSLT can transform one XML instance into another
different instance. Application of a stylesheet by an XSL processor to an XML
document for the purpose of creating another XML document (i.e. an XML to XML
transformation) does not render a presentation format at all. More simply, applying a
stylesheet to XML doesn’t imply that the output is ready for viewing; you have to
understand what the stylesheet is doing.
Substitution Group – In the context of XML Schemas, a substitution group may be
declared for an element to define a synonymous group of tag names. A top-level
element is declared, then other elements are declared with an attribute indicating
they belong in the substitution group of the top element. Different elements do not

G - 8

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/
http://xml.coverpages.org/soap.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://www.w3.org/Consortium/Process-20010719/submission

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
necessarily have to have the same structures – used in this fashion they are
functionally similar to a group of optional elements where only one may be chosen.
The top-level element may be declared abstract; in this case the top level element
may not be used but can serve as a generic model for non-abstract elements in the
substitution group. This is similar and somewhat redundant of the functionality
provided by XML Schema data types.
Throw (an error) – A terms adopted from the Java language to indicate that a
processing error has occurred. Conceptually, Java “throws” the error to an error-
handling object, which “catches” it, or may “throw” it to another object, and so on.
UID – Unique Identifier. A generic term used to indicate that an object or item has a
string or number that identifies it uniquely within a specific context or environment.
Universally Unique Identifiers (UUIDs) and Globally Unique Identifiers (GUIDs) are
special identifiers that are guaranteed universal uniqueness via an identifier
assignment algorithm.
UML - The Unified Modeling Languagexlviii defines a standard language and
graphical notation for creating models of business and technical systems. UML is not
only for programmers, it defines several model types that span a range from
functional requirements definition and activity work-flow (business process) models
to logical and physical software design and deployment. The UML has over the last
few years become the lingua franca for business and technical stakeholders to
communicate and develop IT systems. Through the UMM, UML has been adopted
by UN/CEFACT and ebXML as the modeling language of choice.
UMM - The Unified Modeling Methodologyxlix is a product of UN/CEFACT, and
describes the CEFACT recommended methodology for modeling business
processes to support the development of the next generation EDI. It is based upon
the Rational Unified Processl, and uses the UML as its modeling language. In the
UMM, business processes are modeled by deconstructing them into a series of
document exchanges which are orchestrated to form a complex process. The
ebXML Technical Report, Business Process and Business Information Analysis
Overview v1.0 ,further develops the UMM. The ebXML Business Process
Specification Schema v1.01 (BPSS) provides a schema in the form of a DTD for
specifying business processes as an XML instance; it may be developed as part of a
UMM modeling process.
URL / URI / URN – Uniform Resource Locators, Uniform Resource Indicators, and
Uniform Resource Names are different, related methods of uniformly referencing
resources across networked environments. A recently release W3C Note explains
the differenceli.
Valid (XML) - An XML instance (document) whose structure has been verified in
conformance to a schema by a validating parser. Note that an XML instance must be
well-formed to be valid, but it does not need to be valid to be well-formed. This is
because a parser will always check well-formedness constraints but will only check
validation constraints if it is a validating parser.

G - 9

http://www.rational.com/uml/index.jsp
http://www.unece.org/cefact/
http://www.ebxml.org/
http://www.gefeg.com/tmwg/tm090.pdf
http://www.unece.org/cefact/
http://www.rational.com/products/rup/index.jsp
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/bpOVER.pdf
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
Validating Parser - An XML parser that enforces validity constraints by comparing
the structure and syntax of an XML instance to the rules specified in a schema. Not
all parsers are validating parsers, and validating parsers enforce validation
according to specific schema languages. Most validating parsers are capable of
enforcing validity against a DTD, while some can enforce validation rules described
in other schema languages.
Voluntary Consensus Standards – From OMB Circular A119, ” Voluntary
consensus standards bodies" are domestic or international organizations which plan,
develop, establish, or coordinate voluntary consensus standards using agreed-upon
procedures. For purposes of this Circular, ‘voluntary, private sector, consensus
standards bodies,’ as cited in Act, is an equivalent term. The Act and the Circular
encourage the participation of federal representatives in these bodies to increase the
likelihood that the standards they develop will meet both public and private sector
needs. A voluntary consensus standards body is defined by the following attributes:

(i) Openness.

(ii) Balance of interest.

(iii) Due process.

(vi) An appeals process.

(v) Consensus, which is defined as general agreement, but not necessarily
unanimity, and includes a process for attempting to resolve objections by interested
parties, as long as all comments have been fairly considered, each objector is
advised of the disposition of his or her objection(s) and the reasons why, and the
consensus body members are given an opportunity to change their votes after
reviewing the comments. “
 Examples of these types of organizations are the W3C and OASIS.
W3C - The World Wide Web Consortiumlii was created in October 1994 to lead the
World Wide Web to its full potential by developing common protocols that promote
its evolution and ensure its interoperability. W3C has more than 500 Member
organizationsliii from around the world and has earned international recognition for its
contributions to the growth of the Web.
W3C Recommendation - A work that represents consensusliv within W3C and has
the Director's stamp of approval. W3C considers that the ideas or technology
specified by a Recommendation are appropriate for widespread deployment and
promote W3C's mission.
W3C Note – A W3C Note is a publication of a member idea. Notes do not go
through the consensus process; they represent the ideas of a single (group of) W3C
member(s).

G - 10

http://www.whitehouse.gov/omb/circulars/a119/a119.html
http://www.oasis-open.org/
http://www.w3.org/
http://www.w3.org/Consortium/
http://www.w3.org/Consortium/
http://www.w3.org/Consortium/Process-20010719/submission

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
(W3C) XML Schema - A schema written in according the W3C XML Schema
language. [From the W3C Schemalv page] "XML Schemas express shared
vocabularies and allow machines to carry out rules made by people. They provide a
means for defining the structure, content and semantics of XML documents. The
XML Activity Statementlvi explains the W3C's work on this topic in more detail." The
W3C XML Schema language is described in three recommendations: XML Schema
Part 0: Primerlvii, XML Schema Part 1: Structureslviii, and XML Schema Part 2:
Datatypeslix. In the DON XML Developers Guidance (this document), the term XML
Schema will be used in reference to a W3C XML Schema language compliant
schema.
Web-service – A generic term used to refer to the use of Hypertext Transfer
Protocol (HTTP) and XML to exchange information. Frequently the term implies the
use of SOAP to exchange information between applications, vice application to
human, which is done in HTML.
Well-formed (XML) - An XML instance that meets well-formedness constraints
defined by the XML 1.0 specification. Well-formedness constraints are precise
syntactic rules for markup of data. As an example, the XML specification stipulates
every open tag must have a corresponding and properly nested closing tag. A
document must be well-formed in order to be considered XML. A parser processing
a document will throw a fatal error if it detects a well-formedness violation.
Well-formed HTML - HTML that meets the well-formedness constrains of XML 1.0.
Well-formed HTML is not the same as XHTML.
XHTML - Extensible HyperText Markup Languagelx.
XML - [From the XML 1.0 specification] "Extensible Markup Language, abbreviated
XML, describes a class of data objects called XML documents and partially
describes the behavior of computer programs which process them. XML is an
application profile or restricted form of SGML. By construction, XML documents are
conforming SGML documents." The XML 1.0 specification is a W3C
Recommendation. In XML, metadata is described by an extensible set of tags; the
tags are said to be extensible, because unlike HTML, where the markup tags are
fixed, developers are given the flexibility to define their own tags or reuse tags
defined by another party. This flexibility is both the key to XML's power and the
single biggest stumbling point to achieving interoperability when making use of XML.
(XML) API - Application Programming Interface. In the context of XML, parsers
expose their data to a calling application via an interface. An interface is a
specification (which the parser conforms to) that describes how the parser will pass
data from an XML document to a calling application. The two accepted XML API's
are DOM and SAX.
(XML) Attributes – In the context of XML, attributes provide a mechanism for
attaching additional metadata to an XML element. For example, <element
attribute=”value”/>. An XML attribute is not equivalent to an object or relational
model attribute. Data model entity attributes may be expressed as either XML
attributes or elements. Frequently in discussions surrounding the application of XML

G - 11

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Activity.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/MarkUp/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
to data models, one party will be referring to attributes in the context of XML and
another to attributes in the context of data models, causing confusion.
XML Comments – The structure for inserting free text comments into XML. The
same structure is used for SGML and HTML comments. <!-- comment text here -->
XML Component – A generic term used to refer to XML elements, attributes, and
XML Schema type definitions.
 (XML) Document - - [Paraphrased from the XML 1.0 specification] "A data object is
an XML document if it is well-formed, as defined in the XML 1.0, specification. A
well-formed XML document may in addition be valid if it meets certain constraints"
as described by a schema. Synonymous with XML instance.
(XML) Elements – The fundamental unit of information in XML. Elements are
encapsulated by tags, and may contain (among other things) attributes (declared
inside the opening tag), other elements, or data.
(XML) Child Element – The hierarchical nature of XML allows elements to contain
or be nested inside other elements, forming a conceptual data tree (see DOM).
Often XML elements are referenced in terms of parent-child relationships. A child
element is an element contained between the tags of a parent element. Child
elements are also referred to as descendants, while parent elements may be
referred to as ancestors.
XML Declaration – Every well-formed XML document must begin with a statement
that at a minimum declares the version of XML that the document conforms to.
Example: <?xml version=”1.0”>,
XML Document Tree – Refers to the logical model of an XML document
conceptualized as a data tree, with a Root Node and branch nodes ending at data
that can be thought of as the leaves. See DOM.
(XML) Grammar / Vocabulary – Related terms often used synonymously to indicate
a set of element and attribute names and the structures described by a schema or
set of related schemas that employ the elements and attributes. More precisely, the
term vocabulary implies a commonly defined set of elements and attributes, while
grammar refers to the composition of the vocabulary into meaningful business
documents by one or more related schemas. An XML Namespace may be used to
describe a vocabulary, while a schema may employ vocabulary from a single or
multiple XML Namespaces.
(XML) Instance - Synonymous with XML Document. The term derives from object-
oriented programming where objects are considered instances of classes.
Programmers write code that defines application behavior in terms of classes of
objects. In application execution, objects are instantiated (see object) from these
class definitions. XML provides an object-like way to conceptualize textual data.
Essentially, schemas are the equivalent of object classes, and XML documents are
equivalent of object instances. Hence the term XML instance is widely used;
however, XML document is the official term used by the W3C.

G - 12

http://www.w3.org/TR/2000/REC-xml-20001006

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
XML Namespace – An XML Namespace is a conceptual “space” to which element
and attribute names may be assigned. An XML Namespace is declared within an
XML instance by assigning a URI reference and an optional qualification prefix to an
element. The element and all its children are considered to be “in” the XML
Namespace unless specifically qualified with another Namespace’s prefix. The URI
reference does not have to an associated document physically at the URI. Within an
XML Schema, the ‘targetNamespace’ attribute may be used to indicate that all
elements declared within the schema are to be treated as “in” the target
Namespace. The W3C Recommendation Namespaces in XMLlxi provides the full
specification for XML Namespaces. Note: DoD XML Namespaces may use XML
Namespaces but the two terms are not synonymous.
(XML) Name Token – Per the XML 1.0 specification, a Name Token is “...any
mixture of name characters...” where a “name” character obey the XML name
convention. A [XML] Name “...is a token beginning with a letter or one of a few
punctuation characters, and continuing with letters, digits, hyphens, underscores,
colons, or full stops, together known as name characters. Names beginning with the
string "xml", or any string which would match (('X'|'x') ('M'|'m') ('L'|'l')), are reserved
for standardization in this or future versions of this specification.” White space
characters (hex #x20, #x9, #xD, #xA) are excluded from Name Tokens.
 (XML) Parser - A software application (module) that either reads or receives a text
encoded binary stream, decodes it, verifies the input conforms to "well-formedness"
constraints of the XML 1.0 specification, (in the case of a Validating Parser) checks
validity of the XML Instance against a schema if available, and exposes the content
via an API to a calling application. A parser can be a standalone application, but it is
most often a module called by a larger program (the calling application). A Parser
may also be referred to as an XML Processor.
(XML) Processor - A synonym for an XML parser.
(XML) Registry – A web accessible application for registering information about
XML components. Registration implies some degree of management and oversight.
Registries collect and organize data about XML components ;they do not store the
components themselves. XML component, schema and instance storage is the
function of an XML Repository.
(XML) Repository – A web accessible storage mechanism for XML components.
May or may not be associated with an XML Registry.
 (XML) Root Node – The first node originating the XML Document Tree. The Root
Node is not the same as the root element.
(XML) Root Element – Refers to the XML element in which all other elements must
be nested. The root element (a physical XML construct) is a child of the logical root
node of the document tree.
XML Schema Data Type – An XML component defined by the XML Schema
language. Types do not show up in XML instances; they are used within the Schema
to express relationships, and through type inheritance, add an object-like capability
to XML Schemas. Types may be simple; that is, they allow definition of simple data-

G - 13

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
type constraints on element values, or they may be complex; that is, they define
structures consisting of other elements. For example a type could be defined
<xsd:complexType name=”AddressDetails”>...</xsd:complexType>, then the
definitions for XML elements, ‘ShippingAddress’ and ‘MailingAddress’ could
reference the previously defined generic type.
(XML) Schema Annotation – The XML Schema language allows addition of
annotations to schema components through an ‘annotation’ element
(<xsd:annotation>) which must contain either a ‘documentation’ element
(<xsd:documentation>) or ‘AppInfo’ element (<xsd:appInfo>). A ‘source’ attribute
may be added to either element to provide a URL reference to the source of the
annotation. Annotations provide a more sophisticated way to provide documentation
and application information that may be parsed and accessed by applications via an
API.
 (XML) Tags - XML (and its parent SGML) annotate metadata through the use of
tags that indicate which text in a document are considered metadata and which is to
be considered data. Tags are surrounded by markup characters. As an example, the
data '3000N' can be marked up in XML, <latitude>3000N</latitude>. The tags are
<latitude> (start tag) and </latitude> (end tag). Note: As discussed in the XML
definition presented here, developers are free to defines tags. As an example, the
data '3000N' could be alternatively marked up as, <lat>3000N</lat>, and still be well-
formed. The document schema will specify which of all possible well-formed XML
instances are valid for a particular application. An additional example is <Latitude
hemisphere="N">3000</Latitude>; here the tag contains an XML attribute to
specify the hemisphere. The choice as to the attribute name and possible values are
also at the developer's discretion. Note that Parsers processing documents are
sensitive to markup tag case; therefore, in the first example the tag <latitude> is not
equivalent to the later example tag, <Latitude>.
XPath – XPath is a W3C recommendation whose primary purpose is to provide a
compact, non-XML notation for identifying parts of an XML document. It operates on
the abstract, logical structure of an XML document, rather than its surface syntax by
modeling an XML document as a tree of nodes. The document tree can be
navigated by applications implementing XPath. XPath is the result of an effort to
provide a common syntax and semantics for functionality shared between XSL
Transformations [XSLT] and XPointer.
XSL - The Extensible Style Sheet Language. [From the W3C XSL pagelxii] "XSL is a
language for expressing stylesheets. It consists of three parts: XSL Transformationslxiii
(XSLT): a language for transforming XML documents, the XML Path Languagelxiv
(XPath), an expression language used by XSLT to access or refer to parts of an
XML document (XPath is also used by the XML Linkinglxv specification). The third part
is XSL Formatting Objects: an XML vocabulary for specifying formatting semantics.
An XSL stylesheet specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed into an XML document that
uses the formatting vocabulary. For a more detailed explanation of how XSL works,

G - 14

http://www.w3.org/TR/xpath
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink/

DON XML WG
Appendix G XML Developer's Guide V1.1 – 1 May 2002
see the What Is XSLlxvi page.” As of 16 October 2001, XSLlxvii is a W3C final
recommendation.
XSL Processor - The software (module) executing XSL transformation and
formatting instructions. At a minimum, consists of an XSLT conformant
transformation component, and an optional XSL-FO processing component. A word
of caution: XSL processor vendors often add "extensions" to the XSLT specification.
While often extremely useful, stylesheets written using these extensions will not
perform correctly in another XSLT compliant processor, eliminating their cross-
platform compatibility.
XSL-FO - XSL Formatting Objects: an XML vocabulary for specifying formatting
semantics. XSL-FO works in conjunction with XSLT to markup transformed XML
with formatting object tags. Applications capable of processing these tags render the
XML to another application's presentation environment. For example, Apache's
Formatting Object Processor (FOP) can transform XML to Adobe PDF format.
Another example is jfor, an open-source formatting object processor for transforming
XML to Rich Text Format (RTF).
XSLT - XSL Transformationslxviii , a W3C recommendation [from the XSLT
recommendation] "…defines the syntax and semantics … for transforming XML
documents into other XML documents" [including well-formed HTML]." XSLT is the
only W3C recommended XML syntax for transforming XML documents. Developers
writing stylesheets should ensure they are strictly conformant to this specification to
ensure reusability. Conformance testing through the use of several XSLT compliant
XSL processors is recommended.

G - 15

http://www.w3.org/Style/XSL/WhatIsXSL.html
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://xml.apache.org/fop/
http://www.jfor.org/
http://www.w3.org/TR/xslt

DON XML WG
Appendix H XML Developer's Guide V1.1 – 1 May 2002

Appendix H – Implications of the XML Schema Language for XML
Component Design

The following excerpt is taken from a draft document being produced as part of the
OASIS Technical Committee developing the Universal Business Language. While
the language here is oriented primarily towards the use of XML as a business-to-
business messaging protocol, it provides a good description in business terms of the
benefits of an XML Schema oriented approach to XML component design.

Implications of Schemas for Business Document Design
If we look at schema capabilities, certain considerations regarding data structure
design strike us:
In existing XML schema languages, extensibility is largely limited to element content,
and does not readily accommodate the modification of existing attributes on a
particular XML element. Consequently, designers use elements rather than
attributes to contain data that may be subject to extension in schemas.
Because data typing is much stronger when using XML schema processing,
attention to the actual use of different kinds of data elements is critical in designing a
common library. Where a DTD-based system would not produce errors over minor
variations in the length of a #PCDATA field, for example, schema-validated XML
applications will. The more control over our data our validation gives us, the more
careful we need to be, or we will produce a standard data structure that will not be
useful for some.
In many respects, as a result of schema extensibility, less is more. If we can identify
those places within business document structure that are most liable to be extended,
then we should model only the absolute common core. Because schema extension
mechanisms are additive, it is better to recognize what is in fact common, rather
than taking a (possibly wrong) guess at what might be useful.

Extensibility
The requirements of e-commerce are such that many basic document types are
generally useful, but for specific tasks or for particular markets, minor structural
variations are extremely useful. If a truly common XML structure is to be established
for e-commerce, it will need to be easily modifiable, while minimizing the costs
associated with implementation around these variations on standard data structures.
In EDI there has been a gradual increase in the number of different elements, to
accommodate market-specific variations. Several efforts within the EDI community
are focused on eliminating this problem, which points out the fact that variations are
a requirement, and one that is not easy to meet. A related EDI phenomenon is the
overloading of the meaning and use of existing elements, creating a tangible bar to

H - 1

DON XML WG
Appendix H XML Developer's Guide V1.1 – 1 May 2002
interoperation without low-level coordination between trading partners. The end
result is a high cost in implementation.
XML DTDs require that a data structure be described fully before implementation, in
terms of its elements, attributes, and their structural relationships and content
models. Without these fundamental structural rules in place, building an e-commerce
application becomes difficult or impossible. For documents of a given document type
to be interoperable across different e-commerce applications, they must conform to
a single DTD, with only minimal variation in their structures. In practice, the high
degree of cross-application coordination required to handle structural variation
reduces the usefulness of this built-in document-specific capability of XML
processing with DTDs.
Schema-based XML processing offers us a way to enhance the ability of
applications to interoperate, because it accommodates the required variations in
basic data structures without either overloading the meaning and use of existing
data elements, or requiring wholesale addition of data elements specific to a
particular industry or process. This is accomplished by allowing implementors to
specify new element types that inherit the properties of existing elements. Schemas
also allow you to specify exactly the structural and data content of the additions
made to existing data structures. In this way, schemas allow us to limit variations
and minimize the amount of additional implementation effort required in building an
application.
This benefit derives from the nature of most variations required in e-commerce
documents; many data structures are very similar to “standard” data structures, but
have some significant semantic difference in a particular industry or process.
Because schemas give us a mechanism for indicating the semantic “predecessors”
of a particular variation, generic processing of standard types provides us with a
basis for implementing just the refinements needed to handle the specific semantic
variation. (An example of this would be the addition of a field to an address block to
describe some industry-specific addressing information. The address structure could
be taken from a common library. Only the single additional field would require new
processing, even though the entire structure was given a different name to
distinguish it from the “normal” address structure.)
In those cases where a variation in data structure is required only for some particular
process, schemas again allow us to minimize implementation effort. It is possible to
add a mechanism that allows a system to process a modified data element exactly
as it would process its direct, standard parent, except for the specific interaction that
requires the modified structure. By having most processes ignore the variation,
except where it is specifically needed, schemas again help us reduce the effort
required to build e-commerce applications and enhance the level of interoperability.
Note that schema syntax can express structural extensions and information about
new data types. This ability can help users accommodate requirements placed on
them by legacy processing systems with nonstandard specifications.
While the problems encountered in EDI applications cannot be avoided entirely, the
use of XML schemas helps us identify variations in data structure and manage them

H - 2

DON XML WG
Appendix H XML Developer's Guide V1.1 – 1 May 2002
better. Further, it gives us a solid syntax for modifying only those specific aspects of
the data structure that require modification.

Modularity
Consideration was given to the usability of any standard set of e-commerce
components. If we look at Simple-EDI, we have a case where the different types of
elements have been formally classified:
Message Type—the type of the containing document/message
Segment—the type of the subsection (frequently nested)
Composite Data Elements—data elements that have both data members and some
substructure
Data Elements—data elements without substructure
While Simple-EDI is organized according to this set of distinctions, XML, because it
has a broader application, is not. In XML, an element at any level is potentially a
substructure in some other element. In effect, a PurchaseOrder element is not
significantly different than an AddressBlock element, even though their uses within a
processing application may be very different. The generic processing capabilities of
XML tools do not recognize any inherent difference.
In many ways, this capability of XML is advantageous. It allows us to process nested
(“looping”) structures easily. It fails to provide any useful distinction about the
functional roles played by any specific element in a particular XML application. If
there is any formal distinction in XML, it is between mixed content elements. They
can contain plain text as well as element substructures, and those elements whose
only content is element substructures. Even here, the difference is not as clear as in
EDI, because XML elements are capable of carrying attributes that always contain
content.
However, when it comes to building a standard set of business documents that are
easy to understand and use, the conceptual classification of data elements may be
helpful. If such a classification is seen as useful, a four-level breakdown, based on
the Simple-EDI model, would be the best approach. The WG recognized that this
may or may not be helpful for a particular user population. As it is not a strong
technical distinction in XML, this conceptualization is left up to those documenting a
particular set of business documents for an e-commerce application. It is not seen
as a necessary part of a standard business document set.

Description

XML Schemas can be broken into multiple schema documents, which can be
assembled using includes and imports.

Benefits

• Smaller, modular schema documents encourage reuse.

H - 3

DON XML WG
Appendix H XML Developer's Guide V1.1 – 1 May 2002
• Smaller schema documents are easier to read and maintain.

• Schema documents can be used to organize schema components into logical
units.

Risks

Breaking down schema documents too much (e.g. one schema document per type)
can be confusing and inconvenient to users.

H - 4

DON XML WG
End Notes Initial XML Developer's Guide V1.1 – Consensus Draft 28 January
2002

URL References

i Navy XML Quick Place, http://quickplace.hq.navy.mil/navyxml
ii Task Force Web, http://www.tfw.navy.mil/
iii RFC 2119, http://www.ietf.org/rfc/rfc2119.txt
iv XML Protocol Working Group, http://www.w3.org/2000/xp/Group/
v http://tis.eh.doe.gov/techstds/publaw.html
vi http://www.whitehouse.gov/omb/circulars/a119/a119.html
vii XML Schema Tutorial, http://www.xfront.com/xml-schema.html
viii XFront.com, http://www.xfront.com/
ix Schema Best Practices, http://www.xfront.com/BestPracticesHomepage.html
x eBTWG, http://www.ebtwg.org/
xi eBTWG UML2XML, http://www.ebtwg.org/projects/u2xdr.html
xii COE XML Registry, http://diides.ncr.disa.mil/xmlreg/user/index.cfm
xiii ebXML Specifications and Technical Reports, http://www.ebxml.org/specs/
xiv COE Data Emporium, http://diides.ncr.disa.mil/shade/refdatasets.cfm
xv MIL-STD-6040 (USMTF), http://www-usmtf.itsi.disa.mil/std_6040.html
xvi OASIS, http://www.oasis-open.org/
xvii UN/CEFACT, http://www.unece.org/cefact
xviii eBTWG, http://www.ebtwg.org/
xix ebXML Core Component Technical Reports,
http://www.ebxml.org/specs/#technical_reports
xx ebXML Technical Architecture, http://www.ebxml.org/specs/ebTA.pdf

xxi ebXML Technical Report, Naming Convention for Core Components
http://www.ebxml.org/specs/ebCCNAM.pdf

xxii W3C Technical Recommendations, http://www.w3.org/TR/
xxiii Business Process and Business Information Analysis Overview v1.0,

http://www.ebxml.org/specs/bpOVER.pdf
xxiv ebXML Business Process Specification DTD,
http://www.ebxml.org/specs/ebBPSS.dtd

End Note - 1

http://quickplace.hq.navy.mil/navyxml
http://www.tfw.navy.mil/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/2000/xp/Group/
http://tis.eh.doe.gov/techstds/publaw.html
http://www.whitehouse.gov/omb/circulars/a119/a119.html
http://www.xfront.com/xml-schema.html
http://www.xfront.com/
http://www.xfront.com/BestPracticesHomepage.html
http://www.ebtwg.org/
http://www.ebtwg.org/projects/u2xdr.html
http://diides.ncr.disa.mil/xmlreg/user/index.cfm
http://www.ebxml.org/specs/
http://diides.ncr.disa.mil/shade/refdatasets.cfm
http://www-usmtf.itsi.disa.mil/std_6040.html
http://www.oasis-open.org/
http://www.unece.org/cefact
http://www.ebtwg.org/
http://www.ebxml.org/specs/
http://www.ebxml.org/specs/ebTA.pdf
http://www.ebxml.org/specs/ebCCNAM.pdf
http://www.w3.org/TR/
http://www.ebxml.org/specs/bpOVER.pdf
http://www.ebxml.org/specs/ebBPSS.dtd

DON XML WG
End Notes Initial XML Developer's Guide V1.1 – Consensus Draft 28 January
2002

xxv ebXML Business Process Specification XML Schema (CR),
http://www.ebxml.org/specs/ebBPSS.xsd
xxvi COE XML Registry, http://diides.ncr.disa.mil/xmlreg/user/index.cfm
xxvii COE XML Namespace Managers,
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
xxviii COE XML Registration Information,
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm#submit
xxix The Object Management Group, http://www.omg.org/
xxx eBTWG Core Component Project, http://www.ebtwg.org/projects/core.html
xxxi DDDS, http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
xxxii DoD 8320, http://www-datadmn.itsi.disa.mil/guidance.html
xxxiii COE XML Registry, http://diides.ncr.disa.mil/xmlreg/user/index.cfm
xxxiv COE XML Namespace Managers,
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
xxxv COE XML Registration Information,
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm#submit
xxxvi W3C DOM, http://www.w3.org/DOM/
xxxvii HTML, http://www.w3.org/MarkUp/
xxxviii OMG IDL, http://www.omg.org/gettingstarted/omg_idl.htm
xxxix ISO Store, http://www.iso.ch/iso/en/prods-services/ISOstore/store.htm
xl XML 1.0, http://www.w3.org/TR/2000/REC-xml-20001006
xli Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114/
xlii SAX, http://www.megginson.com/SAX/
xliii ISO 8879 (SGML), http://www.w3.org/TR/2000/#ISO8879
xliv XML Cover Pages - SOAP, http://xml.coverpages.org/soap.html
xlv SOAP 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
xlvi SOAP 1.2, http://www.w3.org/TR/2001/WD-soap12-20010709/
xlvii W3C Process, http://www.w3.org/Consortium/Process-20010719/submission
xlviii UML, http://www.rational.com/uml/index.jsp
xlix Unified Modeling Methodology, http://www.gefeg.com/tmwg/tm090.pdf
l Rational Unified Process, http://www.rational.com/products/rup/index.jsp

End Note - 2

http://www.ebxml.org/specs/ebBPSS.xsd
http://diides.ncr.disa.mil/xmlreg/user/index.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm
http://www.omg.org/
http://www.ebtwg.org/projects/core.html
http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
http://www-datadmn.itsi.disa.mil/guidance.html
http://diides.ncr.disa.mil/xmlreg/user/index.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm
http://www.w3.org/DOM/
http://www.w3.org/MarkUp/
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.iso.ch/iso/en/prods-services/ISOstore/store.htm
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.megginson.com/SAX/
http://www.w3.org/TR/2000/
http://xml.coverpages.org/soap.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://www.w3.org/Consortium/Process-20010719/submission
http://www.rational.com/uml/index.jsp
http://www.gefeg.com/tmwg/tm090.pdf
http://www.rational.com/products/rup/index.jsp

DON XML WG
End Notes Initial XML Developer's Guide V1.1 – Consensus Draft 28 January
2002

li W3C Note, URI/URL/URN Clarification, http://www.w3.org/TR/2001/NOTE-uri-
clarification-20010921/
lii W3C, http://www.w3.org/
liii W3C Members, http://www.w3.org/Consortium/#membership
liv W3C Consensus Processes, http://www.w3.org/Consortium/Process-
20010719/submission
lv W3C Schema page, http://www.w3.org/XML/Schema
lvi W3C Activity Statement, http://www.w3.org/XML/Activity.html
lvii XML Schemas: Part 0, http://www.w3.org/TR/xmlschema-0/
lviii XML Schemas: Part 1, http://www.w3.org/TR/xmlschema-1/
lix XML Schemas: Part 2, http://www.w3.org/TR/xmlschema-2/
lx XHTML, http://www.w3.org/MarkUp/#xhtml1
lxi Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114/
lxii W3C XSL Page, http://www.w3.org/Style/XSL/
lxiii XSL Transformations, http://www.w3.org/TR/xslt
lxiv XPath, http://www.w3.org/TR/xpath
lxv XLink, http://www.w3.org/TR/xlink/
lxvi What is XSL, http://www.w3.org/Style/XSL/WhatIsXSL.html
lxvii XSL Final Recommendation, http://www.w3.org/TR/2001/REC-xsl-20011015/
lxviii XSLT, http://www.w3.org/TR/xslt

End Note - 3

http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
http://www.w3.org/
http://www.w3.org/Consortium/
http://www.w3.org/Consortium/Process-20010719/submission
http://www.w3.org/Consortium/Process-20010719/submission
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Activity.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/MarkUp/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink/
http://www.w3.org/Style/XSL/WhatIsXSL.html
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xslt

	DON XML Working Group
	About This Document
	Table of Contents
	References
	Introduction
	Terminology and Conventions
	Implementation Requirements
	Requirements Level
	Conformance
	Conflict resolution
	Applicability

	DoD XML Registry
	
	
	
	Guidance
	Explanation
	Example

	Recommended XML Specifications
	Guidance
	Explanation
	Example

	XML Conventions
	XML Components
	Standardized Case Convention
	Guidance
	Explanation
	Example

	Usage of Acronyms and Abbreviations
	Guidance
	Explanation
	Example:

	XML Component Selection and Creation
	Guidance
	Explanation
	Example
	Creating XML Element Names from Business Terms
	Guidance
	Explanation
	Examples

	Creating XML Component Names from ISO 11179 Data Elements
	Guidance
	Explanation
	Example

	Choosing XML Component Names
	Guidance
	Explanation

	Schema Design
	Schema Languages
	Guidance
	Explanation
	Example

	Recommended Schema Development Methodology
	Guidance
	Explanation
	Examples

	Capturing Metadata
	Guidance
	Explanation
	Example
	Application Specific Metadata
	Guidance
	Explanation
	Example

	Capturing XML Component Definitions
	Guidance
	Explanation
	Example

	Enumerations and Capturing Code Lists
	Guidance
	Explanation
	Example

	Document Annotations
	Guidance
	Explanation
	Document Versioning
	Guidance
	Explanation
	Versioning DTDs
	Guidance
	Explanation
	Example

	Versioning XML Schemas
	Guidance
	Explanation
	Example

	Versioning Stylesheets
	Guidance
	Explanation
	Example

	Headers
	Guidance
	Schema :
	Stylesheets:
	Instances
	Explanation
	Example

	Attributes vs. Elements
	Guidance
	Explanation
	Example

	Points of Contact
	DON XML WG Government Lead:
	DON XML Technical Lead and Editor:

	Document History
	
	Initial DON XML Developer’s Guide 29 October
	Initial DON XML Developer’s Guide V1.1

	Appendices
	Appendix A – ebXML and the eBTWG
	Description
	ebXML Naming Rules
	Representation Terms

	Appendix B – Schema Development
	Appendix C - Tools and References
	Appendix D – W3C XML Recommendations
	Appendix E – Combined XML Schema Example
	Appendix F – Sample XML Document Headers
	Sample Schema Header
	Notes on header fields:
	Sample Stylesheet Header
	Sample Instance header

	Appendix G – Draft Glossary and Acronyms
	Appendix H – Implications of the XML Schema Langu
	Implications of Schemas for Business Document Design
	Extensibility
	Modularity
	Description
	Benefits
	Risks

